問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關(guān)系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:等腰三角形的三線合一(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)等腰三角形的三線合一(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合);
依據(jù)2:角平分線上的點到角的兩邊的距離相等角平分線上的點到角的兩邊的距離相等.
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.
【答案】等腰三角形的三線合一(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合);角平分線上的點到角的兩邊的距離相等
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2228引用:12難度:0.3
相似題
-
1.如圖,AB=AC,CE∥AB,D是AC上的一點,且AD=CE.
(1)求證:△ABD≌△CAE.
(2)若∠ABD=25°,∠CBD=40°,求∠BAE的度數(shù).發(fā)布:2024/12/23 18:30:1組卷:1817引用:9難度:0.5 -
2.如圖,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分別是E,F(xiàn),求證:
①△ABC≌△BAD;
②CE=DF.發(fā)布:2024/12/23 20:0:2組卷:1347引用:11難度:0.5 -
3.如圖,已知AD、BC相交于點O,AB=CD,AM⊥BC于點M,DN⊥BC于點N,BN=CM.
(1)求證:△ABM≌△DCN;
(2)試猜想OA與OD的大小關(guān)系,并說明理由.發(fā)布:2024/12/23 19:30:2組卷:860引用:8難度:0.6
把好題分享給你的好友吧~~