為落實“雙減”,老師布置了一項這樣的課后作業(yè):
二次函數(shù)的圖象經(jīng)過點(-1,-1),且不經(jīng)過第一象限,寫出滿足這些條件的一個函數(shù)表達式.
【觀察發(fā)現(xiàn)】
請完成作業(yè),并在直角坐標系中畫出大致圖象.
【思考交流】
小亮說:“滿足條件的函數(shù)圖象的對稱軸一定在y軸的左側.”
小瑩說:“滿足條件的函數(shù)圖象一定在x軸的下方.”
你認同他們的說法嗎?若不認同,請舉例說明.
【概括表達】
小博士認為這個作業(yè)的答案太多,老師不方便批閱,于是探究了二次函數(shù)y=ax2+bx+c的圖象與系數(shù)a,b,c的關系,得出了提高老師作業(yè)批閱效率的方法.
請你探究這個方法,寫出探究過程.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:1073引用:3難度:0.4
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3641引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7