在數(shù)的學(xué)習(xí)過程中,我們總會對其中一些具有某種特性的數(shù)充滿好奇,如學(xué)習(xí)自然數(shù)時,我們發(fā)現(xiàn)一種特殊的自然數(shù)--“好數(shù)”.
定義:對于三位自然數(shù)n,各位數(shù)字都不為0,且百位數(shù)字與十位數(shù)字之和恰好能被個位數(shù)字整除,則稱這個自然數(shù)n為“好數(shù)”.
例如:426是“好數(shù)”,因?yàn)?,2,6都不為0,且4+2=6,6能被6整除;
643不是“好數(shù)”,因?yàn)?+4=10,10不能被3整除.
(1)判斷312,675是否是“好數(shù)”?并說明理由;
(2)求出百位數(shù)字比十位數(shù)字大5的所有“好數(shù)”的個數(shù),并說明理由.
【考點(diǎn)】數(shù)的整除性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1151引用:11難度:0.4
相似題
-
1.若整數(shù)a能被整數(shù)b整除,則一定存在整數(shù)n,使得
,即a=bn.例如若整數(shù)a能被11整除,則一定存在整數(shù)n,使得ab=n=n,即a=11n.一個能被11整除的自然數(shù)我們稱為“光棍數(shù)”,他的特征是奇位數(shù)字之和與偶位數(shù)字之和的差能被11整除,如:42559奇數(shù)位的數(shù)字之和為4+5+9=18.偶數(shù)位的數(shù)字之和為2+5=7.18-7=11是11的倍數(shù).所以42559為“光棍數(shù)”.a11
①請你證明任意一個四位“光棍數(shù)”均滿足上述規(guī)律;
②若七位整數(shù)能被11整除.請求出所有符合要求的七位整數(shù).175m62n發(fā)布:2025/5/24 18:30:1組卷:354引用:2難度:0.5 -
2.三個自然數(shù),其中每一個數(shù)都不能被另外兩個數(shù)整除,而其中任意兩個數(shù)的乘積卻能被第三個數(shù)整除,那么這樣的三個自然數(shù)的和的最小值是多少?
發(fā)布:2025/4/20 9:0:1組卷:59引用:0難度:0.9 -
3.有1997個奇數(shù),它們的和等于它們的乘積.其中有三個數(shù)不是1,而是三個不同的質(zhì)數(shù).那么,這樣的三個質(zhì)數(shù)是、、.
發(fā)布:2025/4/18 15:30:1組卷:92引用:1難度:0.5