已知?jiǎng)訄AM經(jīng)過(guò)定點(diǎn)F1(-3,0),且與圓F2:(x-3)2+y2=16內(nèi)切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)軌跡C與x軸從左到右的交點(diǎn)為點(diǎn)A,B,點(diǎn)P為軌跡C上異于A,B的動(dòng)點(diǎn),設(shè)PB交直線x=4于點(diǎn)T,連結(jié)AT交軌跡C于點(diǎn)Q.直線AP、AQ的斜率分別為kAP、kAQ.
(i)求證:kAP?kAQ為定值;
(ii)證明直線PQ經(jīng)過(guò)x軸上的定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
F
1
(
-
3
,
0
)
(
x
-
3
)
2
+
y
2
=
16
【考點(diǎn)】直線與圓錐曲線的綜合;軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:613引用:8難度:0.5
相似題
-
1.已知F1,F(xiàn)2是橢圓E:
+x2a2=1(a>b>0)的左右焦點(diǎn),過(guò)F2作長(zhǎng)軸的垂線,在第一象限和橢圓交于點(diǎn)H,且tan∠HF1F2=y2b2.34
(1)求橢圓的離心率;
(2)若橢圓的準(zhǔn)線方程為x=±4,一條過(guò)原點(diǎn)O的動(dòng)直線l1與橢圓交于A,B兩點(diǎn),N為橢圓上滿足|NA|=|NB|的一點(diǎn),試求5+1|OA|2+1|OB|2的值;2|ON|2
(3)設(shè)動(dòng)直線l2:y=kx+m與橢圓有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,若x軸上存在一定點(diǎn)M(1,0),使得PM⊥QM,求橢圓的方程.發(fā)布:2024/12/1 8:0:1組卷:29引用:1難度:0.1 -
2.動(dòng)點(diǎn)M(x,y)與定點(diǎn)F(4,0)的距離和它到定直線l:x=
的距離的比是常數(shù)94.43
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)直線l:y=kx+b與M的軌跡交于A,B兩點(diǎn),AB的中點(diǎn)坐標(biāo)為(6,2),求直線l的方程.發(fā)布:2024/12/6 23:0:1組卷:280引用:4難度:0.5 -
3.定義:圓錐曲線
的兩條相互垂直的切線的交點(diǎn)Q的軌跡是以坐標(biāo)原點(diǎn)為圓心,C:x2a2+y2b2=1為半徑的圓,這個(gè)圓稱為蒙日?qǐng)A.已知橢圓C的方程為a2+b2,P是直線l:x+2y-3=0上的一點(diǎn),過(guò)點(diǎn)P作橢圓C的兩條切線與橢圓相切于M、N兩點(diǎn),O是坐標(biāo)原點(diǎn),連接OP,當(dāng)∠MPN為直角時(shí),則kOP=( ?。?/h2>x25+y24=1發(fā)布:2024/12/3 6:0:1組卷:122引用:3難度:0.6
把好題分享給你的好友吧~~