某企業(yè)擁有甲、乙兩條零件生產(chǎn)線,為了解零件質(zhì)量情況,采用隨機抽樣方法從兩條生產(chǎn)線共抽取180個零件,測量其尺寸(單位:mm)得到如下統(tǒng)計表,其中尺寸位于[55,58)的零件為一等品,位于[54,55)和[58,59)的零件為二等品,否則零件為三等品.
生產(chǎn)線 | [53,54] | [54,55) | [55,56) | [56,57) | [57,58) | [58,59) | [59,60] |
甲 | 4 | 9 | 23 | 28 | 24 | 10 | 2 |
乙 | 2 | 14 | 15 | 17 | 16 | 15 | 1 |
(2)將樣本頻率視為概率,從甲、乙兩條生產(chǎn)線中分別隨機抽取2個零件,每次抽取零件互不影響,以ξ表示這4個零件中一等品的數(shù)量,求ξ的分布列和數(shù)學(xué)期望E(ξ);
一等品 | 非一等品 | |
甲 | ||
乙 |
附
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:68引用:1難度:0.5
相似題
-
1.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
相關(guān)試卷