已知:11×2=1-12;12×3=12-13;13×4=13-14….
①根據(jù)上式觀察發(fā)現(xiàn)規(guī)律:則199×100=199-1100199-1100,1n(n+1)=1n-1n+11n-1n+1;
②若a-1+ab-2=0,求a,b.
③由②中a,b的值,求1ab+1(a+1)(b+1)+…+1(a+2010)(b+2010)的值.
1
1
×
2
=
1
-
1
2
;
1
2
×
3
=
1
2
-
1
3
;
1
3
×
4
=
1
3
-
1
4
1
99
×
100
1
99
1
100
1
99
1
100
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
a
-
1
+
ab
-
2
1
ab
+
1
(
a
+
1
)
(
b
+
1
)
+
…
+
1
(
a
+
2010
)
(
b
+
2010
)
【考點】規(guī)律型:數(shù)字的變化類.
【答案】-;-
1
99
1
100
1
n
1
n
+
1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:83引用:1難度:0.5
相似題
-
1.觀察以下等式:
第1個等式;14-1=14(1+11×3)
第2個等式;416-1=14(1+13×5)
第3個等式;936-1=14(1+15×7)
第4個等式;1664-1=14(1+17×9)
……
按照以上規(guī)律,解決下列問題:
(1)寫出第5個等式:.
(2)寫出你猜想的第n個等式 (用含n的等式表示),并證明.發(fā)布:2025/5/24 11:0:1組卷:151引用:3難度:0.6 -
2.觀察以下等式:第1個等式:
;第2個等式:21-32=12;第3個等式:32-56=23;第4個等式:43-712=34;……;按照以上規(guī)律,解決下列問題:54-920=45
(1)寫出第6個等式;
(2)寫出你猜想的第n個等式:(用含n的等式表示),并證明.發(fā)布:2025/5/24 11:30:1組卷:110引用:4難度:0.7 -
3.觀察下列等式:
第1個等式:;1+11×3=221×3
第2個等式:;1+12×4=322×4
第3個等式:;1+13×5=423×5
第4個等式:……1+14×6=524×6
按照以上規(guī)律,解決下列問題:
(1)寫出第5個等式:;
(2)寫出第n個等式:(用含n的等式表示),并證明;
(3)計算:.(1+11×3)×(1+12×4)×(1+13×5)×(1+14×6)×…×(1+12020×2022)×(1+12021×2023)發(fā)布:2025/5/24 13:0:1組卷:545引用:5難度:0.5
相關(guān)試卷