綜合與實踐
在一節(jié)數(shù)學(xué)課上,張老師提出了這樣一個問題:如圖1,在等腰直角三角形ABC中,∠BAC=90°,D是邊BC上一動點(不與點B重合),∠EDB=12∠C,BE⊥DE,DE交AB于點F.猜想線段BE,DF之間的數(shù)量關(guān)系并說明理由.

小聰與同桌小明討論后,仍不得其解.張老師給出提示:“數(shù)學(xué)中常通過把一個問題特殊化來找到解題思路.”兩人茅塞頓開,于是進行了如下討論,請仔細閱讀,并完成相應(yīng)的任務(wù).
∠
EDB
=
1
2
∠
C
小聰:已知點D是動點,因此可以將點D移動到一個特殊的位置.當(dāng)點D與點C重合時, 如圖2所示.此時可以分別延長BE,CA交于點H,如圖3所示,可知△CBH是等腰三角形,證明△ABH≌△ACF,從而得出線段BE,DF之間的數(shù)量關(guān)系. ![]() 小明:對于圖2,我有不同的證明方法,過點F分別作BE,AC的平行線,交邊BC于點M, N,如圖4所示,可知△BEF∽△CFM,且FN=MN=CN,又∵FN=FB,可得△BEF與△CFM的相似比為1:2,從而得出線段BE,DF之間的數(shù)量關(guān)系. |
2BE=DF
2BE=DF
;任務(wù)二:通過閱讀上述討論,請在小聰與小明的方法中選擇一種,就圖1中的情形判斷線段BE,DF之間的數(shù)量關(guān)系,并給出證明;
任務(wù)三:若AB=4,其他條件不變,當(dāng)△ADF是直角三角形時,直接寫出BD的長.

【考點】相似形綜合題.
【答案】2BE=DF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 14:0:35組卷:373引用:2難度:0.2
相似題
-
1.如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.
①當(dāng)t為何值時,DP⊥AC?
②設(shè)S△APQ+S△DCQ=y,寫出y與t之間的函數(shù)解析式,并探究P點運動到第幾秒到第幾秒之間時,y取得最小值.發(fā)布:2025/7/1 13:0:6組卷:2101引用:6難度:0.1 -
2.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結(jié)論:①
=AGAB;②若點D是AB的中點,則AF=AFFCAB;③當(dāng)B、C、F、D四點在同一個圓上時,DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結(jié)論序號是( ?。?/h2>12發(fā)布:2025/6/24 16:30:1組卷:2783引用:11難度:0.2 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當(dāng)點E是BC的中點時,有AE=EF成立;
【數(shù)學(xué)思考】某數(shù)學(xué)興趣小組在探究AE、EF的關(guān)系時,運用“從特殊到一般”的數(shù)學(xué)思想,通過驗證得出如下結(jié)論:
當(dāng)點E是直線BC上(B,C除外)任意一點時(其它條件不變),結(jié)論AE=EF仍然成立.
假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應(yīng)用】當(dāng)點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結(jié)論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1873引用:6難度:0.1
相關(guān)試卷