平面直角坐標(biāo)系xOy中,點(diǎn)F1(-1,0),F(xiàn)2(1,0),點(diǎn)M滿足|MF1|+|MF2|=22.記M的軌跡為C.
(1)說(shuō)明C是什么曲線,并求C的方程;
(2)已知經(jīng)過(guò)F2的直線l與C交于A,B兩點(diǎn),若|AF1|?|BF1|=114,求|AB|.
|
M
F
1
|
+
|
M
F
2
|
=
2
2
|
A
F
1
|
?
|
B
F
1
|
=
11
4
【考點(diǎn)】軌跡方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:49引用:1難度:0.4
相似題
-
1.過(guò)橢圓
+x25=1的左焦點(diǎn)F作橢圓的弦AB.如圖y24
(1)求此橢圓的左焦點(diǎn)F的坐標(biāo)和橢圓的準(zhǔn)線方程(x=±);a2c
(2)求弦AB中點(diǎn)M的軌跡方程.發(fā)布:2024/12/1 8:0:1組卷:21引用:1難度:0.3 -
2.設(shè)M是圓P:x2+(y+2)2=36上的一動(dòng)點(diǎn),定點(diǎn)Q(0,2),線段MQ的垂直平分線交線段PM于N點(diǎn),則N點(diǎn)的軌跡方程為( ?。?/h2>
發(fā)布:2024/12/14 4:30:2組卷:79引用:5難度:0.5 -
3.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系xOy中,已知A(-4,2),B(2,2),點(diǎn)P滿足
,設(shè)點(diǎn)P的軌跡為圓C,下列結(jié)論正確的是( )|PA||PB|=2發(fā)布:2024/11/4 6:30:2組卷:302引用:18難度:0.5
把好題分享給你的好友吧~~