如圖1,已知拋物線y=ax2-23x+c與x軸交于點A,B(3,0),與y軸交于點C(0,-1),點P是拋物線上位于對稱軸l右側(cè)一動點.

(1)求拋物線的解析式;
(2)當點P的橫坐標為6時,求四邊形ACBP的面積;
(3)如圖2,對稱軸l分別與x軸交于點D,與直線AC交于點N,過點P作PM⊥l于點M,連接BM,BN.在拋物線上是否存在點P,使△BMN為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
2
3
【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的解析式為y=x2-x-1;
(2)四邊形ACBP的面積是16;
(3)在拋物線上存在點P,使△BMN為直角三角形,點P的坐標為(3,0)或(1+,2).
1
3
2
3
(2)四邊形ACBP的面積是16;
(3)在拋物線上存在點P,使△BMN為直角三角形,點P的坐標為(3,0)或(1+
10
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/30 13:30:1組卷:69引用:1難度:0.3
相似題
-
1.如圖,拋物線與x軸交于A(-1,0)、B兩點,與y軸交于點
,對稱軸為直線x=2.C(0,103)
(1)求此拋物線的表達式;
(2)點Q為對稱軸右側(cè)拋物線上一點,若以BQ為斜邊的等腰直角三角形PBQ的頂點P落在對稱軸x=2上,求點Q的坐標.發(fā)布:2025/5/31 13:30:2組卷:289引用:2難度:0.4 -
2.在平面直角坐標系中,拋物線y=-x2-2x+3與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.
(1)請直接寫出點A,C,D的坐標;
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;
(3)如圖(2),點P為拋物線對稱軸上的動點,使得△ACP為等腰三角形?若存在,求出點P的坐標,若不存在,請說明理由.發(fā)布:2025/5/31 14:30:1組卷:715引用:6難度:0.2 -
3.如圖,在平面直角坐標系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點,與x軸交于點B(1,0).
(1)求拋物線的解析式;
(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標都為2,點F為x軸上的點,若四邊形ADFE是平行四邊形,請直接寫出點F的坐標;
(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求△ACQ的面積的最大值.發(fā)布:2025/5/31 19:0:1組卷:1052引用:7難度:0.1
相關(guān)試卷