【深度閱讀】蘇格蘭哲學(xué)家托馬斯?卡萊爾(1795-1881)曾給出了一元二次方程x2+bx+c=0的幾何解法:如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1),B(-b,c),以AB為直徑作⊙P.若⊙P交x軸于點(diǎn)M(m,0),N(n,0),則m,n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【自主探究】(1)由勾股定理得,AM2=12+m2,BM2=c2+(-b-m)2,AB2=(1-c)2+b2,在Rt△ABM中,AM2+BM2=AB2,所以12+m2+c2+(-b-m)2=(1-c)2+b2.化簡得:m2+bm+c=0.同理可得:n2+bn+c=0n2+bn+c=0.
所以m,n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【遷移運(yùn)用】(2)在圖2中的x軸上畫出以方程x2-3x-2=0兩根為橫坐標(biāo)的點(diǎn)M,N.

(3)已知點(diǎn)A(0,1),B(4,-3),以AB為直徑作⊙C.判斷⊙C與x軸的位置關(guān)系,并說明理由.
【拓展延伸】(4)在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,a),B(-b,c),若以AB為直徑的圓與x軸有兩個(gè)交點(diǎn)M,N,則以點(diǎn)M,N的橫坐標(biāo)為根的一元二次方程是 x2+bx+ac=0x2+bx+ac=0.
【考點(diǎn)】圓的綜合題.
【答案】n2+bn+c=0;x2+bx+ac=0
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/11 1:0:1組卷:134引用:2難度:0.4
相似題
-
1.如圖,四邊形OABC中,AO∥BC,∠AOC=90°,AO=3,AB=5.以O(shè)為圓心,OA為半徑作圓,⊙O經(jīng)過點(diǎn)C,且與BA的延長線交于F.延長AO交圓于E,連接FC交AE于點(diǎn)D.
(1)求證:BC是⊙O的切線;
(2)求cos∠FAE的值;
(3)求線段OD的長.發(fā)布:2025/6/7 5:0:1組卷:79引用:1難度:0.3 -
2.等腰三角形AFG中AF=AG,且內(nèi)接于圓O,D、E為邊FG上兩點(diǎn)(D在F、E之間),分別延長AD、AE交圓O于B、C兩點(diǎn)(如圖1),記∠BAF=α,∠AFG=β.
(1)求∠ACB的大小(用α,β表示);
(2)連接CF,交AB于H(如圖2).若β=45°,且BC×EF=AE×CF.求證:∠AHC=2∠BAC;
(3)在(2)的條件下,取CH中點(diǎn)M,連接OM、GM(如圖3),若∠OGM=2α-45°,
①求證:GM∥BC,GM=BC;12
②請(qǐng)直接寫出的值.OMMC發(fā)布:2025/6/7 16:0:2組卷:1490引用:8難度:0.1 -
3.已知,線段AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是優(yōu)弧CBD上的任意一點(diǎn),AH=2,CH=4.
(1)如圖1,
①求⊙O的半徑;
②求sin∠CMD的值.
(2)如圖2,直線BM交直線CD于點(diǎn)E,直線MH交⊙O于點(diǎn)N,連結(jié)BN交CD于點(diǎn)F,求HE?FH的值.發(fā)布:2025/6/7 7:0:1組卷:476引用:2難度:0.3