已知在平面直角坐標系xOy中,已知A、B是圓O:x2+y2=8上的兩個動點,P是弦AB的中點,且∠AOB=90°;
(1)求點P的軌跡方程;
(2)點P軌跡記為曲線τ,若C,D是曲線τ與x軸的交點,E為直線l:x=4上的動點,直線CE,DE與曲線τ的另一個交點分別為M,N,判斷直線MN是否過定點,若是,求出定點的坐標,若不是,請說明理由.
【考點】軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/6 9:0:9組卷:68引用:3難度:0.5
相似題
-
1.過橢圓
+x25=1的左焦點F作橢圓的弦AB.如圖y24
(1)求此橢圓的左焦點F的坐標和橢圓的準線方程(x=±);a2c
(2)求弦AB中點M的軌跡方程.發(fā)布:2024/12/1 8:0:1組卷:21引用:1難度:0.3 -
2.古希臘著名數(shù)學家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標系xOy中,已知A(-4,2),B(2,2),點P滿足
,設(shè)點P的軌跡為圓C,下列結(jié)論正確的是( )|PA||PB|=2發(fā)布:2024/11/4 6:30:2組卷:302引用:18難度:0.5 -
3.設(shè)M是圓P:x2+(y+2)2=36上的一動點,定點Q(0,2),線段MQ的垂直平分線交線段PM于N點,則N點的軌跡方程為( )
發(fā)布:2024/12/14 4:30:2組卷:79引用:5難度:0.5
把好題分享給你的好友吧~~