(1)證明存在非零整數(shù)對(x,y),使代數(shù)式11x2+5xy+37y2的值為完全平方數(shù);
(2)證明存在六個非零整數(shù)a1,b1,c1,a2,b2,c2,其中a1:a2≠b1:b2,使得對于任意自然數(shù)n,當x=a1n2+b1n+c1,y=a2n2+b2n+c2時,代數(shù)式11x2+5xy+37y2的值都是完全平方數(shù).
【考點】完全平方數(shù).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/27 3:30:1組卷:81引用:1難度:0.1
相似題
-
1.如果對于不<8的自然數(shù)n,當3n+1是一個完全平方數(shù)時,n+1能表示成k個完全平方數(shù)的和,那么k的最小值為( )
發(fā)布:2025/6/17 23:0:1組卷:550引用:18難度:0.5 -
2.在2001、2002、…、2010這10個數(shù)中,不能表示成兩個平方數(shù)差的數(shù)有
發(fā)布:2025/6/19 1:30:1組卷:77引用:2難度:0.7 -
3.對于任意一個三位正整數(shù),百位上的數(shù)字加上個位上的數(shù)字之和恰好等于十位上的數(shù)字,則稱這個三位數(shù)為“牛轉(zhuǎn)乾坤數(shù)”.例如:對于三位數(shù)451,4+1=5,則451是“牛轉(zhuǎn)乾坤數(shù)”;對于三位數(shù)110,1+0=1,則110是“牛轉(zhuǎn)乾坤數(shù)”.
(1)求證:任意一個“牛轉(zhuǎn)乾坤數(shù)”一定能被11整除;
(2)在一個“牛轉(zhuǎn)乾坤數(shù)”的十位與百位之間添加1得到一個新的四位數(shù)M,若M的各位數(shù)字之和為完全平方數(shù),求所有滿足條件的“牛轉(zhuǎn)乾坤數(shù)”.發(fā)布:2025/6/2 11:30:1組卷:750引用:2難度:0.3