已知橢圓C:x2a2+y2b2=1(a>b>0)與雙曲線E:x23-y2=1的離心率互為倒數,橢圓C的上頂點為M,右頂點為N,O為坐標原點,△MON的面積為1.
(1)求橢圓C的標準方程;
(2)若直線l與曲線D:x2+y2=b2相切,與橢圓C交于A,B兩點,求|AB|的取值范圍.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
E
:
x
2
3
-
y
2
=
1
【考點】橢圓的弦及弦長.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:135難度:0.6
相似題
-
1.已知橢圓C的焦點為F1(-1,0),F2(1,0),過F2的直線與C交于A,B兩點.若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( )
發(fā)布:2024/12/17 23:0:2組卷:489引用:17難度:0.6 -
2.已知橢圓C的焦點為F1(-1,0),F2(1,0),過F2的直線與C交于A,B兩點.若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( ?。?/h2>
發(fā)布:2024/12/15 23:30:1組卷:1134引用:10難度:0.6 -
3.橢圓E:
的左、右焦點分別為F1,F2,直線l過F2與E交于A,B兩點,△ABF1為直角三角形,且|AF1|,|AB|,|BF1|成等差數列,則E的離心率為( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/11/9 20:0:2組卷:145引用:3難度:0.5
把好題分享給你的好友吧~~