攢尖是中國(guó)古代建筑中屋頂?shù)囊环N結(jié)構(gòu)形式,宋代稱(chēng)為撮尖,清代稱(chēng)攢尖.通常有圓形攢尖、三角攢尖、四角攢尖、八角攢尖,也有單檐和重檐之分,多見(jiàn)于亭閣式建筑、園林建筑.如圖所示的建筑屋頂是圓形攢尖,可近似看作一個(gè)圓錐,已知其軸截面(過(guò)圓錐旋轉(zhuǎn)軸的截面)是底邊長(zhǎng)為6m,腰長(zhǎng)為5m的等腰三角形,則該屋頂?shù)捏w積約為( ?。?/h1>
【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積;旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))的體積.
【答案】D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:91引用:1難度:0.7
相似題
-
1.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
,四邊形DCBE為平行四邊形,DC⊥平面ABC.32
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.發(fā)布:2025/1/20 8:0:1組卷:95引用:3難度:0.1 -
2.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
(Ⅱ)求三棱錐B-CME的體積.發(fā)布:2025/1/20 8:0:1組卷:16引用:1難度:0.5 -
3.如圖所示,AB為圓O的直徑,PC⊥平面ABC,Q在線(xiàn)段PA上.
(1)求證:平面BCQ⊥平面ACQ;
(2)若Q為靠近P的一個(gè)三等分點(diǎn),PC=BC=1,,求VP-BCQ的值.AC=22發(fā)布:2025/1/20 8:0:1組卷:36引用:3難度:0.6
相關(guān)試卷