不等式組x+y≥1 x-2y≤4
的解集記為D,有下列四個命題:
p1:?(x,y)∈D,x+2y≥-2 p2:?(x,y)∈D,x+2y≥2
p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤-1
其中真命題是( ?。?/h1>
x + y ≥ 1 |
x - 2 y ≤ 4 |
【考點】命題的真假判斷與應(yīng)用.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/23 12:30:3組卷:1857引用:29難度:0.5
相似題
-
1.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中的真命題是( ?。?/h2>A.①②④ B.②③ C.③④ D.②③④ 發(fā)布:2024/12/22 8:0:1組卷:98引用:2難度:0.5 -
2.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,是解析數(shù)論的創(chuàng)始人之一,以其名命名的函數(shù) f(x)=
稱為狄利克雷函數(shù),則關(guān)于f(x),下列說法正確的是( ?。?/h2>1,x∈Q0,x∈?RQA.?x∈R,f(f(x))=1 B.函數(shù)f(x)是偶函數(shù) C.任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立 D.存在三個點A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得△ABC為等邊三角形 發(fā)布:2024/12/22 8:0:1組卷:91引用:9難度:0.7 -
3.已知函數(shù)f(x)=
,則關(guān)于函數(shù)f(x)有如下說法:1(x為有理數(shù))0(x為無理數(shù))
①f(x)的圖象關(guān)于y軸對稱;
②方程f(f(x))=x的解只有x=1;
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④不存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中正確的個數(shù)是( ?。?/h2>A.1 B.2 C.3 D.4 發(fā)布:2024/12/22 8:0:1組卷:73引用:1難度:0.3
把好題分享給你的好友吧~~