已知正方形ABCD,將線段BA繞點B旋轉(zhuǎn)α(0°<α<90°),得到線段BE,連接EA,EC.
(1)如圖1,當(dāng)點E在正方形ABCD的內(nèi)部時,若BE平分∠ABC,AB=4,則∠AEC=135135°,四邊形ABCE的面積為 8282;
(2)當(dāng)點E在正方形ABCD的外部時,
①在圖2中依題意補全圖形,并求∠AEC的度數(shù);
②作∠EBC的平分線BF交EC于點G,交EA的延長線于點F,連接CF.用等式表示線段AE,F(xiàn)B,F(xiàn)C之間的數(shù)量關(guān)系,并證明.
2
2
【考點】幾何變換綜合題.
【答案】135;8
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/28 8:0:9組卷:2111引用:10難度:0.4
相似題
-
1.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:407引用:2難度:0.1 -
2.(1)如圖1,等邊△ABC中,BC=6,點P是BC上一動點,點P關(guān)于直線AB、AC的對稱點分別為點M、N,連接MN.
①當(dāng)點P與點B重合時,線段MN的長是;當(dāng)AP的長最小時,線段MN的長是;
②如圖2,連接PM、PN,分別交AB、AC于點D、E.當(dāng)PB為多少時,線段MN的長是2?21
(2)如圖3,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,點P、Q、R分別為邊BC、AB、AC上(均不與端點重合)的動點,求△PQR周長的最小值并簡要說明理由.3發(fā)布:2024/11/21 8:0:2組卷:296引用:1難度:0.1 -
3.閱讀下列材料,完成相應(yīng)任務(wù).
【探究三角形中邊與角之間的不等關(guān)系】
學(xué)習(xí)了等腰三角形,我們知道在一個三角形中,等邊所對的角相等;反過來,等角所對的邊也相等,那么,不相等的邊所對的角之間的大小關(guān)系怎樣呢?大邊所對的角也大嗎?下面是奮進小組的證明過程.
如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
證明:如圖2,將△ABC折疊,使邊AC落在AB上,點C落在AB上的點C'處,折痕AD交BC于點D.則∠AC'D=∠C.
∵∠AC'D=+∠BDC'(三角形外角的性質(zhì))
∴∠AC'D>∠B
∴∠C>∠B(等量代換)
類似地,應(yīng)用這種方法可以證明“在一個三角形中,大角對大邊,小角對小邊”的問題.
任務(wù)一:將上述證明空白部分補充完整;
任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問題,再用三角形外角的性質(zhì)或三邊關(guān)系進而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是 ;(填正確選項的代碼:單選)
A.轉(zhuǎn)化思想
B.方程思想
C.?dāng)?shù)形結(jié)合思想
任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說法,正確的有 (將正確的代碼填在橫線處:多選).
①在△ABC中,AB>BC,則∠A>∠B;
②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
③Rt△ABC中,∠B=90°,則最長邊是AC;
④在△ABC中,∠A=55°,∠B=70°,則AB=BC.發(fā)布:2024/11/22 8:0:1組卷:183引用:2難度:0.4
把好題分享給你的好友吧~~