觀察下列各式:①1+13=213;②2+14=314;③3+15=415,…,請用含n(n≥1)的式子表示以上算式的規(guī)律:n+1n+2=(n+1)1n+2n+1n+2=(n+1)1n+2.
1
+
1
3
1
3
2
+
1
4
1
4
3
+
1
5
1
5
n
+
1
n
+
2
=
(
n
+
1
)
1
n
+
2
n
+
1
n
+
2
=
(
n
+
1
)
1
n
+
2
【考點(diǎn)】算術(shù)平方根;規(guī)律型:數(shù)字的變化類.
【答案】
n
+
1
n
+
2
=
(
n
+
1
)
1
n
+
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/31 14:30:1組卷:40引用:3難度:0.8