已知A(-2,0),B(2,0)平面內(nèi)一動(dòng)點(diǎn)P滿(mǎn)足kPA?kPB=-34.
(1)求P點(diǎn)運(yùn)動(dòng)軌跡C的軌跡方程;
(2)已知直線(xiàn)l與曲線(xiàn)C交于M,N兩點(diǎn),當(dāng)P點(diǎn)坐標(biāo)為(1,32)時(shí),kPM+kPN=0恒成立,試探究直線(xiàn)l的斜率是否為定值?若為定值請(qǐng)求出該定值,若不是定值請(qǐng)說(shuō)明理由.
k
PA
?
k
PB
=
-
3
4
(
1
,
3
2
)
【考點(diǎn)】軌跡方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:102引用:5難度:0.6
相似題
-
1.點(diǎn)P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),滿(mǎn)足
=t(AP),t∈(0,+∞),則點(diǎn)P的軌跡通過(guò)△ABC的( )AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知兩個(gè)定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿(mǎn)足|PA|=2|PB|.
(1)求點(diǎn)P的軌跡方程并說(shuō)明該軌跡是什么圖形;
(2)若直線(xiàn)l:y=kx+1分別與點(diǎn)P的軌跡和圓(x+2)2+(y-4)2=4都有公共點(diǎn),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:39引用:3難度:0.5 -
3.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點(diǎn)E為BC的中點(diǎn).四棱錐P-ABCD的所有頂點(diǎn)都在同一個(gè)球面上,點(diǎn)M是該球面上的一動(dòng)點(diǎn),且PM⊥AE,則點(diǎn)M的軌跡的長(zhǎng)度為( ?。?/h2>
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6
把好題分享給你的好友吧~~