若x滿足(9-x)(x-4)=4,求(9-x)2+(x-4)2的值.
解:設(shè)9-x=a,x-4=b,則(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,
∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.
請仿照上面的方法求解下面問題:
(1)若x滿足(x-10)(x-20)=15,求(x-10)2+(x-20)2的值;
(2)若x滿足(x-2021)2+(x-2022)2=33,求(x-2021)(x-2022)的值;
(3)已知正方形ABCD的邊長為x,E,F(xiàn)分別是AD、DC上的點,且AE=1,CF=3,長方形EMFD的面積是48,分別以MF、DF為邊長作正方形MFRN和正方形GFDH,求陰影部分的面積.
【考點】完全平方公式的幾何背景;多項式乘多項式.
【答案】(1)130;
(2)16;
(3)28.
(2)16;
(3)28.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/7 2:0:9組卷:576引用:4難度:0.6
相似題
-
1.如圖所示的是正方形的房屋結(jié)構(gòu)平面圖,其中主臥與客臥都是正方形,其面積之和比其余面積(陰影部分)多6.25m2,則主臥與客臥的周長差是( ?。?/h2>
發(fā)布:2025/1/1 6:30:3組卷:212引用:4難度:0.6 -
2.靈活運(yùn)用完全平方公式(a±b)2=a2±2ab+b2可以解決許多數(shù)學(xué)問題.
例如:已知a-b=3,ab=1,求a2+b2的值.
解:∵a-b=3,ab=1,∴(a-b)2=9,2ab=2,∴a2-2ab+b2=9,∴a2-2+b2=9,∴a2+b2=9+2=11.
請根據(jù)以上材料,解答下列問題.
(1)若a2+b2與2ab-4互為相反數(shù),求a+b的值.
(2)如圖,矩形的長為a,寬為b,周長為14,面積為8,求a2+b2的值.發(fā)布:2025/5/23 21:0:1組卷:435引用:4難度:0.6 -
3.如圖,兩個正方形邊長分別為a,b,如果a+b=10,ab=18,則陰影部分的面積為.
發(fā)布:2024/12/23 18:0:1組卷:2025引用:6難度:0.5