如圖,在平面直角坐標系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E.連接CE,已知點A,D的坐標分別為(-2,0),(6,-8).
(1)求拋物線的函數表達式;
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE,若存在,請求點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),當△OPD是等腰三角形,請直接寫出m的值.
【考點】二次函數綜合題.
【答案】(1);
(2)拋物線上存在點F,使△FOE≌△FCE,理由見解答過程;點F坐標或;
(3)-10或-16或.
y
=
1
2
x
2
-
3
x
-
8
(2)拋物線上存在點F,使△FOE≌△FCE,理由見解答過程;點F坐標
(
3
+
17
,-
4
)
(
3
-
17
,-
4
)
(3)-10或-16或
-
25
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/21 14:0:2組卷:177引用:4難度:0.1
相似題
-
1.我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經過點D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1 -
2.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-2)、(1,-2),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為( ?。?/h2>
A.-3 B.-1 C.1 D.3 發(fā)布:2025/6/8 8:0:6組卷:4103難度:0.7 -
3.已知函數y=
,記該函數圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當m=2時,
①已知M(4,n)在該函數圖象上,求n的值;
②當0≤x≤2時,求函數G的最大值.
(2)當m>0時,作直線x=m與x軸交于點P,與函數G交于點Q,若∠POQ=45°時,求m的值;12
(3)當m≤3時,設圖象與x軸交于點A,與y軸交于點B,過點B作BC⊥BA交直線x=m于點C,設點A的橫坐標為a,C點的縱坐標為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081難度:0.1