(1)問(wèn)題發(fā)現(xiàn):如圖①,直線AB∥DC,E是AB與DC之間的一點(diǎn),連接BE、CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC,請(qǐng)把下面的證明過(guò)程補(bǔ)充完整:
證明:過(guò)點(diǎn)E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC,
∴∠C=∠CEF∠CEF.
∵EF∥AB,∴∠B=∠BEF∠BEF,
∴∠B+∠C=∠CEF+∠BEF∠CEF+∠BEF.
即∠B+∠C=∠BEC.
(2)拓展探究:
如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,求證:∠B+∠C=360°-∠BEC;
(3)解決問(wèn)題:
如圖③,AB∥DC,∠C=120°,∠AEC=80°,求∠A的度數(shù).
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】∠CEF;∠BEF;∠CEF+∠BEF
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/26 8:0:9組卷:23引用:4難度:0.6
相似題
-
1.如圖,已知AD⊥BC,垂足為點(diǎn)D,EF⊥BC,垂足為點(diǎn)F,∠1+∠2=180°.請(qǐng)?zhí)顚憽螩GD=∠CAB的理由.
∵AD⊥BC,EF⊥BC,
∴∠ADC=90°,∠EFC=90° ( ),
∴∠ADC=∠EFC,
∴AD∥( ),
∴∠+∠2=180°( ),
∵∠1+∠2=180°,
∴∠=∠( ),
∴DG∥( ),
∴∠CGD=∠CAB.發(fā)布:2025/6/8 20:0:1組卷:863引用:12難度:0.5 -
2.如圖,若直線AB∥CD,AE,CF分別是∠MAB和∠MCD的角平分線,求證:AE∥CF.
證明:∵AB∥CD(已知)
∴∠MAB=( ).
∵AE,CF分別是∠MAB和∠MCD的角平分線(已知),
∴=,12∠MAB(角平分線的定義).∠MCF=12
∴∠MAE=(等量代換).
∴AE∥CF ( ).發(fā)布:2025/6/8 20:30:2組卷:160引用:2難度:0.8 -
3.如圖,AC,BD被AB所截,E為AB外一點(diǎn),連接CE,ED,已知∠A=(90+x)°,∠B=(90-x)°,∠CED=90°,2∠C-∠D=α°.
(1)判斷AC與BD的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)α=30°時(shí),求∠C,∠D的度數(shù);
(3)求∠C,∠D的度數(shù)(用含α的式子表示).發(fā)布:2025/6/8 19:30:1組卷:83引用:2難度:0.7