如圖,在菱形ABCD中,AB=45,tan∠BAC=2.點E在射線BC上.連接DE,DE繞點D順時針旋轉(zhuǎn),旋轉(zhuǎn)后得到的線段所在的直線與直線AC交于點F,旋轉(zhuǎn)角∠EDF=∠BAC.射線DE與直線AC交于點P.

(1)如圖1,當(dāng)點E在線段BC上時,求證:FD2=FC?FP.
(2)當(dāng)點E在射線BC上,若CE=25時,求線段DF的長.
(3)如圖2,連接EF,當(dāng)EF垂直于菱形任意一邊時,求線段EF的長.
5
5
【考點】四邊形綜合題.
【答案】(1)證明過程詳見解答;
(2)DF=或;
(3)EF=8或.
(2)DF=
185
65
(3)EF=8
5
40
5
11
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:155引用:1難度:0.1
相似題
-
1.下面是小林同學(xué)設(shè)計的“作矩形ABCD”的尺規(guī)作圖過程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
作法:
如圖,1.以點B為圓心,AC長為半徑作弧;
2.以點A為圓心,BC長為半徑作?。?br />3.兩弧交于點D,C、D在AB同側(cè):
4.連接AD、CD,所以四邊形ABCD是矩形.
根據(jù)小林同學(xué)設(shè)計的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)請補(bǔ)全下面的證明過程.
證明:連接BD,(提示:請完成此項要求)
在△ABC和△BAD中,,BC=(??)AC=(??)AB=BA
∴△ABC≌△BAD(SSS).
∴∠BAD=∠ABC=90°.
∴∠ABC+∠BAD=180°.
∴BC∥AD.
∵BC∥AD,BC=AD,
∴四邊形ABCD是平行四邊形( )(填理論依據(jù)1).
∵AC=BD,
∴四邊形ABCD是矩形.( )(填理論依據(jù)2).發(fā)布:2025/6/14 18:30:4組卷:16引用:1難度:0.3 -
2.已知正方形ABCD,一等腰直角三角板的一個銳角頂點與A重合,將此三角板繞A點旋轉(zhuǎn)時,兩邊分別交直線BC、CD于M、N.
(1)正方形的內(nèi)角和是 °,∠MAN=°;
(2)當(dāng)M、N分別在邊BC、CD上時(如圖1),求證:BM+DN=MN;
(3)當(dāng)M、N分別在邊BC、CD所在的直線上時(如圖2),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請直接寫出結(jié)論 ;(不用證明)
(4)當(dāng)M、N分別在邊BC、CD所在的直線上時(如圖3),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請寫出結(jié)論并寫出證明過程.發(fā)布:2025/6/14 18:30:4組卷:261引用:2難度:0.1 -
3.(1)問題引入
如圖1,點F是正方形ABCD邊CD上一點,連接AF,將△ADF繞點A順時針旋轉(zhuǎn)90°與△ABG重合(D與B重合,F(xiàn)與G重合,此時點G,B,C在一條直線上),∠GAF的平分線交BC于點E,連接EF,判斷線段EF與GE之間有怎樣的數(shù)量關(guān)系,并說明理由.
(2)知識遷移
如圖2,在四邊形ABCD中,∠ADC+∠B=180°,AB=AD,E,F(xiàn)分別是邊BC,CD延長線上的點,連接AE,AF,且∠BAD=2∠EAF,試寫出線段BE,EF,DF之間的數(shù)量關(guān)系,并說明理由.
(3)實踐創(chuàng)新
如圖3,在四邊形ABCD中,∠ABC=90°,AC平分∠DAB,點E在AB上,連接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的長.(用含a,b,c的式子表示)發(fā)布:2025/6/14 19:0:1組卷:1975引用:4難度:0.2