我們規(guī)定:對于數(shù)對(a,b),如果滿足a+b=ab,那么就稱數(shù)對(a,b)是“和積等數(shù)對”;如果滿足a-b=ab,那么就稱數(shù)對(a,b)是“差積等數(shù)對”,例如:32+3=32×3,2-23=2×23.所以數(shù)對(32,3)為“和積等數(shù)對”,數(shù)對(2,23)為“差積等數(shù)對”.
(1)下列數(shù)對中,“和積等數(shù)對”的是 ②②;“差積等數(shù)對”的是 ①①.
①(-23,-2),②(23,-2),③(-23,2).
(2)若數(shù)對(x-12,-2)是“差積等數(shù)對”,求x的值.
(3)是否存在非零有理數(shù)m,n,使數(shù)對(2m,n)是“和積等數(shù)對”,同時數(shù)對(2n,m)也是“差積等數(shù)對”,若存在,求出m,n的值,若不存在,說明理由.
3
2
+
3
=
3
2
2
3
=
2
×
2
3
3
2
2
3
2
3
2
3
-
2
3
x
-
1
2
【考點】因式分解的應用.
【答案】②;①
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/17 12:0:1組卷:870引用:6難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4