我們規(guī)定:對于數(shù)對(a,b),如果滿足a+b=ab,那么就稱數(shù)對(a,b)是“和積等數(shù)對”;如果滿足a-b=ab,那么就稱數(shù)對(a,b)是“差積等數(shù)對”,例如:32+3=32×3,2-23=2×23.所以數(shù)對(32,3)為“和積等數(shù)對”,數(shù)對(2,23)為“差積等數(shù)對”.
(1)下列數(shù)對中,“和積等數(shù)對”的是 ②②;“差積等數(shù)對”的是 ①①.
①(-23,-2),②(23,-2),③(-23,2).
(2)若數(shù)對(x-12,-2)是“差積等數(shù)對”,求x的值.
(3)是否存在非零有理數(shù)m,n,使數(shù)對(2m,n)是“和積等數(shù)對”,同時數(shù)對(2n,m)也是“差積等數(shù)對”,若存在,求出m,n的值,若不存在,說明理由.
3
2
+
3
=
3
2
2
3
=
2
×
2
3
3
2
2
3
2
3
2
3
-
2
3
x
-
1
2
【考點】因式分解的應(yīng)用.
【答案】②;①
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/17 12:0:1組卷:953引用:7難度:0.5
相似題
-
1.已知正整數(shù)a,b,c(其中a≠1)滿足abc=ab+8,則a+b+c的最小值是 .
發(fā)布:2025/6/7 13:30:1組卷:435引用:6難度:0.7 -
2.如果一個正整數(shù)可以表示為兩個連續(xù)奇數(shù)的平方差,那么稱該正整數(shù)為“和諧數(shù)”(如8=32-12,即8為“和諧數(shù)”),在不超過2021的正整數(shù)中,所有的“和諧數(shù)”之和為( ?。?/h2>
發(fā)布:2025/6/7 17:0:1組卷:145引用:1難度:0.5 -
3.先閱讀下面的內(nèi)容,再解決問題:
問題:對于形如x2+2xa+a2,這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2xa-3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2xa-3a2中先加上一項a2,使它與x2+2xa的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.利用“配方法”,解決下列問題:
(1)分解因式:a2-6a+5;
(2)若;a2+b2-12a-6b+45+|12m-c|=0
①當(dāng)a,b,m滿足條件:2a×4b=8m時,求m的值;
②若△ABC的三邊長是a,b,c,且c邊的長為奇數(shù),求△ABC的周長.發(fā)布:2025/6/7 15:0:1組卷:525引用:3難度:0.4