如圖,在平行四邊形ABCD中,∠ABC=45°,E、F分別在CD和BC的延長(zhǎng)線上,AE∥BD,∠EFC=30°,AB=4,求CF的長(zhǎng).
【考點(diǎn)】平行四邊形的性質(zhì);勾股定理.
【答案】.
CF
=
4
2
+
4
6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/7 21:30:1組卷:104引用:2難度:0.5
相似題
-
1.如圖,在?ABCD中,點(diǎn)E,F(xiàn)分別是邊AB,CD的中點(diǎn),
(1)求證:△CFB≌△AED;
(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說(shuō)明理由;發(fā)布:2025/6/8 5:0:1組卷:208引用:3難度:0.3 -
2.如圖,在平行四邊形ABCD中,AC與BD交于點(diǎn)O,點(diǎn)E是BC邊的中點(diǎn),OE=1,則AB的長(zhǎng)是( )
發(fā)布:2025/6/8 5:30:2組卷:50引用:4難度:0.6 -
3.如圖,在平行四邊形ABCD中,∠B=110°,延長(zhǎng)AD至F,延長(zhǎng)CD至E,連接EF,則∠E+∠F的值為
發(fā)布:2025/6/8 5:30:2組卷:208引用:35難度:0.7