長(zhǎng)為22線段EF的兩個(gè)端點(diǎn)E、F分別在坐標(biāo)軸x軸、y軸上滑動(dòng),設(shè)線段中點(diǎn)為M,線段EF在滑動(dòng)過程中,點(diǎn)M形成軌跡為C.
(1)求C的方程;
(2)過點(diǎn)P(0,1)直線l與軌跡C交于A、B兩點(diǎn).
①寫出|AP||PB|的取值范圍,可簡(jiǎn)要說明理由;
②坐標(biāo)平面內(nèi)是否存在異于點(diǎn)P的定點(diǎn)Q,當(dāng)l轉(zhuǎn)動(dòng)時(shí),總有|QA||QB|=|PA||PB|恒成立?若存在,請(qǐng)求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
2
|
AP
|
|
PB
|
|
QA
|
|
QB
|
=
|
PA
|
|
PB
|
【考點(diǎn)】軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:96引用:1難度:0.1
相似題
-
1.過橢圓
+x25=1的左焦點(diǎn)F作橢圓的弦AB.如圖y24
(1)求此橢圓的左焦點(diǎn)F的坐標(biāo)和橢圓的準(zhǔn)線方程(x=±);a2c
(2)求弦AB中點(diǎn)M的軌跡方程.發(fā)布:2024/12/1 8:0:1組卷:21引用:1難度:0.3 -
2.設(shè)M是圓P:x2+(y+2)2=36上的一動(dòng)點(diǎn),定點(diǎn)Q(0,2),線段MQ的垂直平分線交線段PM于N點(diǎn),則N點(diǎn)的軌跡方程為( ?。?/h2>
發(fā)布:2024/12/14 4:30:2組卷:79引用:5難度:0.5 -
3.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系xOy中,已知A(-4,2),B(2,2),點(diǎn)P滿足
,設(shè)點(diǎn)P的軌跡為圓C,下列結(jié)論正確的是( ?。?/h2>|PA||PB|=2發(fā)布:2024/11/4 6:30:2組卷:302引用:18難度:0.5
把好題分享給你的好友吧~~