數(shù)學(xué)課上,李老師提出了一個問題:在矩形ABCD中,AB=9,AD=12,在AD邊上取一點(diǎn)M使AM=8,將AM繞點(diǎn)A順時針旋轉(zhuǎn)α度到AG,以AG為邊作矩形AEFG(如圖1所示),AE=6,連接DG、BE交于點(diǎn)N.
(1)求證:DG⊥BE.小明經(jīng)過思考后,很快得到了解題思路:先用“兩邊對應(yīng)成比例且夾角相等”證明△ADG∽△ABE,然后根據(jù)“直角三角形兩銳角互余”可證明∠BND=∠BAD=90°,從而得到DG⊥BE.請你按照他的思路完成證明過程;
(2)連接BG,當(dāng)旋轉(zhuǎn)角α=150時(如圖2),求S△ABGS△ADG的值;
(3)連接DE(如圖3),當(dāng)0<α<180°時,小明發(fā)現(xiàn)DE2+BG2是一個定值,請求出這個值.
?
S
△
ABG
S
△
ADG
【考點(diǎn)】相似形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:110引用:1難度:0.1
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點(diǎn),P是腰AB上一動點(diǎn),連接PE并延長,交射線CD于點(diǎn)M,作EF⊥PE,交下底BC于點(diǎn)F,連接MF交AD于點(diǎn)N,連接PF,AB=AD=4,BC=6,點(diǎn)A、P之間的距離為x,△PEF的面積為y.
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時,求x的值;
(2)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)當(dāng)∠CMF=∠PFE時,求△PEF的面積.發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5 -
2.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問題的重要思維方式,角平分線的有關(guān)聯(lián)想就有很多……
(1)【問題提出】如圖①,PC是△PAB的角平分線,求證.PAPB=ACBC小明思路:關(guān)聯(lián)“平行線、等腰三角形”,過點(diǎn)B作BD∥PA,交PC的延長線于點(diǎn)D,利用“三角形相似”.
小紅思路:關(guān)聯(lián)“角平分線上的點(diǎn)到角的兩邊的距離相等”,過點(diǎn)C分別作CD⊥PA交PA于點(diǎn)D,作CE⊥PB交PB于點(diǎn)E,利用“等面積法”.
(2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點(diǎn)D,則BD長度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點(diǎn),連接AD,將△ACD沿AD所在直線折疊點(diǎn)C恰好落在邊AB上的E點(diǎn)處.若AC=1,AB=2,則DE的長為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線,AD的垂直平分線EF交BC延長線于F,連接AF,當(dāng)BD=3時,AF的長為 .發(fā)布:2025/1/28 8:0:2組卷:312引用:1難度:0.1 -
3.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點(diǎn),連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點(diǎn)C按順時針方向旋轉(zhuǎn)一定角度,使點(diǎn)E落在△ABC內(nèi)部,連接AD、BE,并延長BE分別交AC、AD于點(diǎn)O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應(yīng)用】將圖②的△CDE繞著點(diǎn)C按順時針方向旋轉(zhuǎn),使點(diǎn)D恰好落在邊BC的延長線上,連接AD、BE,BE的延長線交AD于點(diǎn)F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長為.發(fā)布:2025/1/28 8:0:2組卷:300引用:1難度:0.1
相關(guān)試卷