觀察下列解題過(guò)程:
計(jì)算:1+5+52+53+…+524+525的值.
解:設(shè)S=1+5+52+53+…+524+525,(1)
則5S=5+52+53+…+525+526(2)
(2)-(1),得4S=526-1
S=526-14
通過(guò)閱讀,你一定學(xué)會(huì)了一種解決問(wèn)題的方法,請(qǐng)用你學(xué)到的方法計(jì)算:
(1)1+3+32+33+…+39+310
(2)1+x+x2+x3+…+x99+x100.
5
26
-
1
4
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:993引用:8難度:0.3
相似題
-
1.我們來(lái)研究一些特殊的求和類型問(wèn)題.
類型一:形如1+2+3+…+100=?經(jīng)過(guò)研究,這個(gè)問(wèn)題的一般性結(jié)論是:1+2+3+…+n=n(n+1),其中n是正整數(shù);12
類型二:.1×2+2×3+…n(n+1)=?對(duì)于這個(gè)問(wèn)題,我們觀察下面三個(gè)特殊的等式
1×2=(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4).13
將這三個(gè)等式的兩邊相加,可以得到1×2+2×3+3×4=×3×4×5=2013
讀完這段材料,請(qǐng)你思考后回答:
(1)類比:1×2+2×3+…+10×11=
(2)歸納:1×2+2×3+…+n(n+1)=
(3)猜想:由上面兩種類型的求和結(jié)果試寫出
1×2×3+2×3×4+…+n(n+1)(n+2)=.發(fā)布:2025/6/23 6:0:1組卷:126引用:2難度:0.5 -
2.找規(guī)律,在橫線上填上適當(dāng)?shù)臄?shù):3、7、15、31、63、
發(fā)布:2025/6/23 6:30:1組卷:69引用:1難度:0.7 -
3.下列單項(xiàng)式按一定規(guī)律排列:x,-2x2,3x3,-4x4,…,9x9,-10x10,……
(1)寫出第99個(gè)及第100個(gè)單項(xiàng)式;
(2)寫出第n個(gè)單項(xiàng)式.發(fā)布:2025/6/23 5:0:1組卷:58引用:1難度:0.7