問題提出:
(1)我們把兩個(gè)面積相等但不全等的三角形叫做“偏等積三角形”.如圖1,△ABC中,AC=7,BC=9,AB=10,P為AC上一點(diǎn),當(dāng)AP=7272時(shí),△ABP與△CBP是偏等積三角形;
問題探究:
(2)如圖2,△ABD與△ACD是偏等積三角形,AB=2,AC=6,且線段AD的長(zhǎng)度為正整數(shù),過點(diǎn)C作CE∥AB交AD的延長(zhǎng)線于點(diǎn)E,求AE的長(zhǎng)度;
問題解決:
(3)如圖3,四邊形ABED是一片綠色花園,△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°).
①△ACD與△BCE是偏等積三角形嗎?請(qǐng)說明理由;
②已知BE=60m,△ACD的面積為2100m2.如圖4,計(jì)劃修建一條經(jīng)過點(diǎn)C的筆直的小路CF,F(xiàn)在BE邊上,F(xiàn)C的延長(zhǎng)線經(jīng)過AD中點(diǎn)G.若小路每米造價(jià)600元,請(qǐng)計(jì)算修建小路的總造價(jià).
7
2
7
2
【考點(diǎn)】四邊形綜合題.
【答案】
7
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1246引用:6難度:0.2
相似題
-
1.如圖①,矩形ABCD中,AB=12,AD=25,延長(zhǎng)CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點(diǎn)E落在BC上的點(diǎn)F處,連接DF.△ABE從點(diǎn)B出發(fā),沿線段BC以每秒3個(gè)單位的速度平移得到△A′B′E′,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE又從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移,當(dāng)點(diǎn)E′到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)線段DF的長(zhǎng)度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請(qǐng)直接寫出面積S與運(yùn)動(dòng)時(shí)
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移時(shí),設(shè)A′B′
交射線FD于點(diǎn)M,交線段AD于點(diǎn)N,是否存在某一時(shí)刻t,使得△DMN為等腰三角形?若存在,請(qǐng)求出相應(yīng)的t值;若不存在,請(qǐng)說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
2.在矩形ABCD中,點(diǎn)E在BC上,以AE為邊作?AEFG,使點(diǎn)D在AE的對(duì)邊FG上.
(1)填空:如圖1,連接DE,則△ADE的面積=
并直接寫出?AEFG的面積S1與矩形ABCD的面積S2的數(shù)量關(guān)系;
(2)如圖2,EF與CD交于點(diǎn)P,連接PA.
①若∠F=90°,證明:A、E、P、D四點(diǎn)在同一個(gè)圓上;并直接說明點(diǎn)D、F、C、E是否在同一個(gè)圓上;
(3)如圖3,在①的條件下,若AB<BC,AG=AE,且D是FG的中點(diǎn),EF交CD于點(diǎn)P,試判斷以FG為直徑的圓與直線PA的位置關(guān)系,并說明理由.發(fā)布:2025/1/13 8:0:2組卷:63引用:1難度:0.1 -
3.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點(diǎn)E、M,另一邊分別與射線DB、射線DC交于點(diǎn)F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長(zhǎng)交射線AB于點(diǎn)K,求線段BK的長(zhǎng).14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9
把好題分享給你的好友吧~~