配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法,這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來解決一些問題.我們定義:一個(gè)整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”,例如,5是“完美數(shù)”.理由:因?yàn)?=22+12.所以5是“完美數(shù)”.
解決問題:
(1)已知10是“完美數(shù)”,請將它寫成a2+b2;(a、b是整數(shù))的形式 10=32+1210=32+12;
(2)若x2-4x+3可配方成(x-m)2+n(m、n為常數(shù)),則mn=-2-2;
探究問題:
(3)已知x2+y2-2x+6y+10=0,則x+y=-2-2;
(4)已知S=x2+9y2+4x-12y+k(x、y是整數(shù),k是常數(shù)),要使S為“完美數(shù)”,試求出符合條件的一個(gè)k值,并說明理由.
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】10=32+12;-2;-2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/16 18:0:9組卷:113引用:2難度:0.7
相似題
-
1.設(shè)x,y都是實(shí)數(shù),請?zhí)骄肯铝袉栴},
(1)嘗試:①當(dāng)x=-2,y=1時(shí),∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當(dāng)x=1,y=2時(shí),∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當(dāng)x=2,y=2.5時(shí),∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當(dāng)x=3,y=3時(shí),∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關(guān)系?試說明理由.
(3)運(yùn)用:求代數(shù)式的最小值.x2+4x2發(fā)布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.基本不等式的性質(zhì):一般地,對于a>0,b>0,我們有a+b≥2
,當(dāng)且僅當(dāng)a=b時(shí)等號成立.例如:若a>0,則a+ab=6,當(dāng)且僅當(dāng)a=3時(shí)取等號,a+9a≥2a?9a的最小值等于6.根據(jù)上述性質(zhì)和運(yùn)算過程,若x>1,則4x+9a的最小值是( )1x-1發(fā)布:2025/5/23 13:30:1組卷:839引用:6難度:0.4 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( )
發(fā)布:2024/12/23 12:30:2組卷:397引用:9難度:0.4