如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與坐標(biāo)軸相交于A、B、C三點,其中A點坐標(biāo)為(3,0),B點坐標(biāo)為(-1,0),連接AC、BC.動點P從點A出發(fā),在線段AC上以每秒2個單位長度向點C做勻速運動;同時,動點Q從點B出發(fā),在線段BA上以每秒1個單位長度向點A做勻速運動,當(dāng)其中一點到達(dá)終點時,另一點隨之停止運動,連接PQ,設(shè)運動時間為t秒.
(1)求b、c的值.
(2)在P、Q運動的過程中,當(dāng)t為何值時,四邊形BCPQ的面積最小,最小值為多少?
(3)在線段AC上方的拋物線上是否存在點M,使△MPQ是以點P為直角頂點的等腰直角三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
2
【考點】二次函數(shù)綜合題.
【答案】(1)b=2,c=3;(2)t=2,最小值為4;(3)(,).
3
+
17
4
23
+
17
8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/1 12:30:1組卷:2895引用:16難度:0.4
相似題
-
1.如圖,拋物線y=ax2+bx+c與x軸交于原點O和點A,且其頂點B關(guān)于x軸的對稱點坐標(biāo)為(2,1).
(1)求拋物線的函數(shù)表達(dá)式;
(2)拋物線的對稱軸上存在定點F,使得拋物線y=ax2+bx+c上的任意一點G到定點F的距離與點G到直線y=-2的距離總相等.
①證明上述結(jié)論并求出點F的坐標(biāo);
②過點F的直線l與拋物線y=ax2+bx+c交于M,N兩點.
證明:當(dāng)直線l繞點F旋轉(zhuǎn)時,+1MF是定值,并求出該定值;1NF
(3)點C(3,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQBC周長最小,直接寫出P,Q的坐標(biāo).發(fā)布:2025/6/16 5:0:1組卷:2172引用:5難度:0.4 -
2.如圖,二次函數(shù)y=ax2-6ax-16a(a≠0)的圖象與x軸交于點A,B(A在B左側(cè)),與y軸正半軸交于點C,點D在拋物線上,CD∥x軸,且OD=AB.
(1)求點A,B的坐標(biāo)及a的值;
(2)點P為y軸右側(cè)拋物線上一點.
①如圖①,若OP平分∠COD,OP交CD于點E,求點P的坐標(biāo);
②如圖②,拋物線上一點F的橫坐標(biāo)為2,直線CF交x軸于點G,過點P作直線CF的垂線,垂足為Q,若∠PCQ=∠BGC,求點Q的坐標(biāo).發(fā)布:2025/6/16 7:30:1組卷:1429引用:4難度:0.1 -
3.如圖,已知拋物線y=ax2+bx+5經(jīng)過A(-5,0),B(-4,-3)兩點,與x軸的另一個交點為C,頂點為D,連接BD,CD.
(1)求該拋物線的表達(dá)式;
(2)判斷△BCD的形狀,并說明理由;
(3)若點P為該拋物線上一動點(與點B、C不重合),該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,請直接寫出滿足條件的所有點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/16 5:30:3組卷:1379引用:2難度:0.1
相關(guān)試卷