取一條長度為1的線段,將它三等分,去掉中間一段,留剩下的兩段分割三等分,各去掉中間一段,留剩下的更短的四段;……;將這樣的操作一直繼續(xù)下去,直至無窮,由于在不斷分割舍棄過程中,所形成的線段數目越來越多,長度越來越小,在極限的情況下,得到一個離散的點集,稱為康托爾三分集.若在第n次操作中去掉的線段長度之和不小于160,則n的最大值為 ( )
(參考數據:lg2≈0.3010,lg3≈0.4771)
1
60
【考點】數列的應用;根據實際問題選擇函數類型.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:304難度:0.5
相似題
-
1.已知{an},{bn}為兩非零有理數列(即對任意的i∈N*,ai,bi均為有理數),{dn}為一無理數列(即對任意的i∈N*,di為無理數).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn3}為有理數列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1 -
2.對于數列{an},把a1作為新數列{bn}的第一項,把ai或-ai(i=2,3,4,…,n)作為新數列{bn}的第i項,數列{bn}稱為數列{an}的一個生成數列.例如,數列1,2,3,4,5的一個生成數列是1,-2,-3,4,5.已知數列{bn}為數列{
}(n∈N*)的生成數列,Sn為數列{bn}的前n項和.12n
(Ⅰ)寫出S3的所有可能值;
(Ⅱ)若生成數列{bn}滿足S3n=(1-17),求數列{bn}的通項公式;18n
(Ⅲ)證明:對于給定的n∈N*,Sn的所有可能值組成的集合為{x|x=,k∈N*,k≤2n-1}.2k-12n發(fā)布:2024/12/28 23:30:2組卷:115引用:6難度:0.1 -
3.2023年是我國規(guī)劃的收官之年,2022年11月23日全國22個省份的832個國家級貧困縣全部脫貧摘帽.利用電商平臺,開啟數字化科技優(yōu)勢,帶動消費扶貧起到了重要作用.阿里研究院數據顯示,2013年全國淘寶村僅為20個,通過各地政府精準扶貧,與電商平臺不斷合作創(chuàng)新,2014年、2015年、2016年全國淘寶村分別為212個、779個、1311個,從2017年起比上一年約增加1000個淘寶村,請你估計收官之年全國淘寶村的數量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9
把好題分享給你的好友吧~~