已知曲線C由C1:x2a2+y2b2=1(a>b>0,x≥0)和C2:x2+y2=b2(x<0)兩部分組成,C1所在橢圓的離心率為32,上、下頂點(diǎn)分別為B1,B2,右焦點(diǎn)為F,C2與x軸相交于點(diǎn)D,四邊形B1FB2D的面積為3+1.
(1)求a,b的值;
(2)若直線l與C1相交于A,B兩點(diǎn),|AB|=2,點(diǎn)P在C2上,求△PAB面積的最大值.
x
2
a
2
+
y
2
b
2
3
2
3
【考點(diǎn)】橢圓的弦及弦長(zhǎng).
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:223引用:2難度:0.5
相似題
-
1.已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過(guò)F2的直線與C交于A,B兩點(diǎn).若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( ?。?/h2>
發(fā)布:2024/12/17 23:0:2組卷:495引用:17難度:0.6 -
2.已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過(guò)F2的直線與C交于A,B兩點(diǎn).若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( ?。?/h2>
發(fā)布:2024/12/15 23:30:1組卷:1149引用:10難度:0.6 -
3.橢圓E:
的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l過(guò)F2與E交于A,B兩點(diǎn),△ABF1為直角三角形,且|AF1|,|AB|,|BF1|成等差數(shù)列,則E的離心率為( )x2a2+y2b2=1(a>b>0)發(fā)布:2024/11/9 20:0:2組卷:150引用:3難度:0.5