閱讀并解決問(wèn)題.
對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接運(yùn)用公式了.
此時(shí),我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添一個(gè)適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”,請(qǐng)用“配方法”解決以下問(wèn)題.
(1)利用“配方法”分解因式:a2-4a-12;
(2)19世紀(jì)的法國(guó)數(shù)學(xué)家蘇菲熱門解決了“把x4+4分解因式”這個(gè)問(wèn)題:x4+4=x4+4x2+4-4x2=(x2+2)2-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).請(qǐng)你把x4+64y4因式分解;
(3)若2m2-4mn+3n2-8n+16=0,求m和n的值.
【答案】(1)(x+2)(x-6);
(2)(x2+4xy+8y2)(x2-4xy+8y2);
(3)m=4,n=4.
(2)(x2+4xy+8y2)(x2-4xy+8y2);
(3)m=4,n=4.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/6 11:30:1組卷:936引用:3難度:0.6
相似題
-
1.因式x2+ax+b時(shí),甲看錯(cuò)了a的值,分解的結(jié)果是(x+6)(x-1),乙看錯(cuò)了b,分解的結(jié)果是(x-2)(x+1),那么ab.
發(fā)布:2025/6/23 22:30:1組卷:133引用:1難度:0.5 -
2.閱讀與思考:
整式乘法與因式分解是方向相反的變形
由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);
利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,
例如:將式子x2+3x+2分解因式.
分析:這個(gè)式子的常數(shù)項(xiàng)2=1×2,一次項(xiàng)系數(shù)3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.
解:x2+3x+2=(x+1)(x+2)
請(qǐng)仿照上面的方法,解答下列問(wèn)題
(1)分解因式:x2+7x-18=
啟發(fā)應(yīng)用
(2)利用因式分解法解方程:x2-6x+8=0;
(3)填空:若x2+px-8可分解為兩個(gè)一次因式的積,則整數(shù)p的所有可能值是 .發(fā)布:2025/6/23 14:0:1組卷:5095引用:9難度:0.5 -
3.因式分解:ax2-7ax+6a=
發(fā)布:2025/6/24 6:0:1組卷:2960引用:54難度:0.7