已知數(shù)列{an}中,Sn是其前n項的和,5S2=11S1,an+1an=2-an+1.
(1)求a1,a2的值,并證明{1an-1}是等比數(shù)列;
(2)證明:n-1+12n<Sn<n-12+12n+1.
a
n
+
1
a
n
=
2
-
a
n
+
1
{
1
a
n
-
1
}
n
-
1
+
1
2
n
<
S
n
<
n
-
1
2
+
1
2
n
+
1
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:193引用:3難度:0.3
相似題
-
1.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個問題中,以一個月31天計算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項和為Sn.若關(guān)于n的不等式
恒成立,則實數(shù)t的取值范圍為( ?。?/h2>Sn-62<a2n+1-tan+1發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6 -
2.已知等比數(shù)列a1,a2,…,a9各項為正且公比q≠1,則( ?。?/h2>
發(fā)布:2024/11/25 22:30:1組卷:33引用:2難度:0.8 -
3.已知等比數(shù)列{an}的前n項和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( ?。?/h2>am+am+1+…+am+k-am+1Sk<2023(k∈N*)發(fā)布:2024/12/7 11:0:2組卷:199引用:4難度:0.5
把好題分享給你的好友吧~~