在課外小組活動時,小慧拿來一道題(原問題)和小東、小明交流.
原問題:如圖1,已知△ABC,∠ACB=90°,∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F.探究線段DF與EF的數(shù)量關系.
小慧同學的思路是:過點D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.
小東同學說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.
小明同學經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.
請你參考小慧同學的思路,探究并解決這三位同學提出的問題:
(1)寫出原問題中DF與EF的數(shù)量關系;
(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
(3)如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明.
【考點】全等三角形的判定與性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/28 0:0:8組卷:9387引用:8難度:0.1
相似題
-
1.如圖,在△ABC中,∠BAC=90°,延長BA到點D,使AD=
AB,點E、F分別為BC、AC的中點,請你在圖中找出一組相等關系,使其滿足上述所有條件,并加以證明.12發(fā)布:2025/1/24 8:0:2組卷:4引用:1難度:0.5 -
2.如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延長線于F,E為垂足,則結(jié)論:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正確的是
發(fā)布:2025/1/24 8:0:2組卷:420引用:2難度:0.9 -
3.如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在線段BC上,且AE=CF.
求證:∠AEB=∠CFB.發(fā)布:2025/1/24 8:0:2組卷:453引用:4難度:0.7