閱讀下面的情景對話,然后解答問題:
老師:我們將奇異三角形定義為兩邊平方和等于第三邊平方的2倍的三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形是否存在奇異三角形呢?
【感知】
(1)根據(jù)“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,請判斷小紅提出的命題是否正確,并填空 正確正確(填“正確”或“不正確”);
(2)若某三角形的三邊長分別是3、11、7,則△ABC是奇異三角形嗎?是是(填“是”或“不是”);
【思考】
(1)若Rt△ABC是奇異三角形,且其兩邊長分別為2、23,則第三邊的邊長為 2222;且此直角三角形的三邊之比為 1:2:31:2:3(請按從小到大排列);
(2)如圖1,在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
【運用】如圖2,在Rt△ABC中,∠ACB=90°,以AB為斜邊作等腰直角△ABD,點E是AC下方的一點,且滿足AE=AD,CE=CB.
(1)求證:△ACE是奇異三角形;
(2)當(dāng)△ACE是直角三角形時,記△ABC的面積為S1,四邊形ACBD的面積為S2,則S1S2=23-3.23-3..
?
11
7
2
3
2
2
2
3
2
3
S
1
S
2
3
3
【考點】四邊形綜合題.
【答案】正確;是;2;1::;2-3.
2
2
3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/11 11:0:2組卷:338引用:2難度:0.4
相似題
-
1.如圖①,矩形ABCD中,AB=12,AD=25,延長CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點E落在BC上的點F處,連接DF.△ABE從點B出發(fā),沿線段BC以每秒3個單位的速度平移得到△A′B′E′,當(dāng)點E′到達(dá)點F時,△ABE又從點F開始沿射線FD方向以每秒5個單位的速度平移,當(dāng)點E′到達(dá)點D時停止運動,設(shè)運動的時間為t秒.
(1)線段DF的長度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請直接寫出面積S與運動時
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當(dāng)點E′到達(dá)點F時,△ABE從點F開始沿射線FD方向以每秒5個單位的速度平移時,設(shè)A′B′
交射線FD于點M,交線段AD于點N,是否存在某一時刻t,使得△DMN為等腰三角形?若存在,請求出相應(yīng)的t值;若不存在,請說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
2.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點E、M,另一邊分別與射線DB、射線DC交于點F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長交射線AB于點K,求線段BK的長.14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9 -
3.已知:如圖1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,cot∠ABC=
,點E在AD邊上,且AE=3ED,EF∥AB,EF交BC于點F,點M、N分別在射線FE和線段CD上.12
(1)求線段CF的長;
(2)如圖2,當(dāng)點M在線段FE上,且AM⊥MN,設(shè)FM?cos∠EFC=x,CN=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果△AMN為等腰直角三角形,求線段FM的長.發(fā)布:2025/1/21 8:0:1組卷:95引用:3難度:0.2