閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.
解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網格(網格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數量關系.

【考點】相似形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1683引用:37難度:0.5
相似題
-
1.在△ABC中,AB=AC,∠BAC=90°,點D,E分別是AC,BC的中點,點P是射線DE上一點,連接AP,將線段PA繞點P順時針旋轉90°得到線段PM,連接AM,CM.
(1)如圖①,當點P與點D重合時,線段CM與PE的數量關系是 ,∠ACM=°;
(2)如圖②當點P在射線DE上運動時(不與點D,E重合),求的值;PECM
(3)連接PC,當△PCM是等邊三角形時,請直接寫出的值.ACCM發(fā)布:2025/5/23 0:30:1組卷:370引用:2難度:0.1 -
2.如圖1,AB=AC=2CD,DC∥AB,將△ACD繞點C逆時針旋轉得到△FCE,使點D落在AC的點E處,AB與CF相交于點O,AB與EF相交于點G,連接BF.
(1)求證:△ABE≌△CAD;
(2)求證:AC∥FB;
(3)若點D,E,F在同一條直線上,如圖2,求的值.(溫馨提示:請用簡潔的方式表示角)ABBC發(fā)布:2025/5/23 1:0:1組卷:363難度:0.4 -
3.已知△ABC是等邊三角形,D是直線AB上的一點.
(1)問題背景:如圖1,點D,E分別在邊AB,AC上,且BD=AE,CD與BE交于點F,求證:∠EFC=60°;
(2)點G,H分別在邊BC,AC上,GH與CD交于點O,且∠HOC=60°.
①嘗試運用:如圖2,點D在邊AB上,且,求OHOG=43的值;ABBD
②類比拓展:如圖3,點D在AB的延長線上,且,直接寫出OHOG=256的值.ABBD發(fā)布:2025/5/23 1:0:1組卷:822引用:3難度:0.2