若limx→1x2-6x+5x2-1=a,則limn→∞(1a+1a2+1a3+…+1an)的值為( ?。?/h1>
lim
x
→
1
x
2
-
6
x
+
5
x
2
-
1
=
a
lim
n
→∞
(
1
a
+
1
a
2
+
1
a
3
+
…
+
1
a
n
)
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:56引用:5難度:0.9
相似題
-
1.已知x+x2+x3+…+xn=a0+a1(x-3)+a2(x-3)2+a3(x-3)3+…+an(x-3)n(n∈N*),且An=a0+a1+a2+…+an,則
=.limn→∞An4n發(fā)布:2024/12/30 13:0:5組卷:178引用:3難度:0.5 -
2.有一列正方體,棱長組成以1為首項、
為公比的等比數(shù)列,體積分別記為V1,V2,…,Vn,…,則12(V1+V2+…+Vn)=.limn→∞發(fā)布:2024/10/21 20:0:2組卷:391引用:5難度:0.7 -
3.已知n是正整數(shù),數(shù)列{art}的前n項和為Sna1=1,數(shù)列{
}的前n項和為Tn數(shù)列{Tn}的前n項和為Pn,Sn,是nan,an的等差中項?1an
(I)求limn→∞Snn2
(II)比較(n+1)Tn+1-nTn與1+Tn大??;
(III)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請說明理由.發(fā)布:2024/10/27 17:0:2組卷:19引用:1難度:0.5