已知F1(-62,0),F2(62,0)是橢圓C的兩個(gè)焦點(diǎn)坐標(biāo),P(3,1)是橢圓C上的一個(gè)定點(diǎn),A,B是橢圓C上的兩點(diǎn),點(diǎn)M的坐標(biāo)為(1,0).
(1)求橢圓C的方程;
(2)當(dāng)A,B兩點(diǎn)關(guān)于x軸對(duì)稱,且△MAB為等邊三角形時(shí),求AB的長(zhǎng);
(3)當(dāng)A,B兩點(diǎn)不關(guān)于x軸對(duì)稱時(shí),證明:△MAB不可能為等邊三角形.
F
1
(
-
6
2
,
0
)
,
F
2
(
6
2
,
0
)
P
(
3
,
1
)
【考點(diǎn)】橢圓的幾何特征;橢圓的標(biāo)準(zhǔn)方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:366引用:1難度:0.3
相似題
-
1.已知橢圓C的兩焦點(diǎn)分別為
、F1(-22,0),長(zhǎng)軸長(zhǎng)為6.F2(22,0)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:434引用:6難度:0.8 -
2.阿基米德(公元前287年-公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( )32發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5 -
3.已知橢圓
=1(a>b>0)的一個(gè)焦點(diǎn)為F(2,0),橢圓上一點(diǎn)P到兩個(gè)焦點(diǎn)的距離之和為6,則該橢圓的方程為( )x2a2+y2b2發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7