(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=(x-3)2(x-3)2,25x2+10x+1=(5x+1)2(5x+1)2,4x2+12x+9=(2x+3)2(2x+3)2.
(2)觀察上述三個多項式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測:若多項式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請你用數(shù)學(xué)式子表示小明的猜測:b2=4acb2=4ac.
(3)已知代數(shù)式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x)是一個完全平方式,試問以a、b、c為邊的三角形是什么三角形?
【答案】(x-3)2;(5x+1)2;(2x+3)2;b2=4ac
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/8 2:0:2組卷:222引用:5難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:387引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4