已知離散型隨機(jī)變量X的方差為1,則D(3X-1)=( ?。?/h1>
【考點(diǎn)】離散型隨機(jī)變量的方差與標(biāo)準(zhǔn)差.
【答案】D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/26 22:0:3組卷:43引用:2難度:0.8
相似題
-
1.中國(guó)在第75屆聯(lián)合國(guó)大會(huì)上承諾,將采取更加有力的政策和措施,力爭(zhēng)于2030年之前使二氧化碳的排放達(dá)到峰值,努力爭(zhēng)取2060年之前實(shí)現(xiàn)碳中和(簡(jiǎn)稱(chēng)“雙碳目標(biāo)”),新能源汽車(chē)、電動(dòng)汽車(chē)對(duì)于實(shí)現(xiàn)“雙碳目標(biāo)”具有重要的作用,為了解某一地區(qū)電動(dòng)汽車(chē)銷(xiāo)售情況,一機(jī)構(gòu)根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到電動(dòng)汽車(chē)銷(xiāo)量y(單位:萬(wàn)臺(tái))關(guān)于x(年份)的線性回歸方程為y=4.7x-9459.2,且銷(xiāo)量y的方差為
,年份x的方差為s2y=2545.s2x=2
(1)求y與x的相關(guān)系數(shù)r,并據(jù)此判斷電動(dòng)汽車(chē)銷(xiāo)量y與年份x的相關(guān)性強(qiáng)弱;
(2)該機(jī)構(gòu)還調(diào)查了該地區(qū)90位購(gòu)車(chē)車(chē)主的性別與購(gòu)車(chē)種類(lèi)情況,得到的數(shù)據(jù)如表:性別 購(gòu)買(mǎi)非電動(dòng)汽車(chē) 購(gòu)買(mǎi)電動(dòng)汽車(chē) 總計(jì) 男性 39 6 45 女性 30 15 45 總計(jì) 69 21 90
(3)在購(gòu)買(mǎi)電動(dòng)汽車(chē)的車(chē)主中按照性別進(jìn)行分層抽樣抽取7人,再?gòu)倪@7人中隨機(jī)抽取3人,記這3人中,男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
①參考數(shù)據(jù):;5×127=635≈25
②參考公式:(i)線性回歸方程:,其中y=?bx+?a;?b=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2,?a=y-?bx
(ii)相關(guān)系數(shù):,若r>0.9,則可判斷y與x線性相關(guān)較強(qiáng).r=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2
(iii),其中n=a+b+c+d.附表:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)發(fā)布:2024/12/10 8:0:1組卷:75引用:1難度:0.4 -
2.已知離散型隨機(jī)變量X的方差為1,則D(3X+1)=.
發(fā)布:2024/12/20 13:30:1組卷:90引用:3難度:0.9 -
3.“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車(chē)產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國(guó)某地區(qū)新能源乘用車(chē)的年銷(xiāo)售量與年份的統(tǒng)計(jì)表:
年份 2014 2015 2016 2017 2018 銷(xiāo)量(萬(wàn)臺(tái)) 8 10 13 25 24 購(gòu)置傳統(tǒng)燃油車(chē) 購(gòu)置新能源車(chē) 總計(jì) 男性車(chē)主 6 24 女性車(chē)主 2 總計(jì) 30
(2)請(qǐng)將上述2×2列聯(lián)表補(bǔ)充完整,并判斷是否有90%的把握認(rèn)為購(gòu)車(chē)車(chē)主是否購(gòu)置新能源乘用車(chē)與性別有關(guān);
(3)若以這30名購(gòu)車(chē)車(chē)主中購(gòu)置新能源乘用車(chē)的車(chē)主性別比例作為該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主性別比例,從該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主中隨機(jī)選取50人,記選到女性車(chē)主的人數(shù)為X,求X的數(shù)學(xué)期望與方差.
參考公式:,r=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2,其中n=a+b+c+d.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),若r>0.9,則可判斷y與x線性相關(guān).635≈25
附表:P(K2≥k0) 0.10 0.05 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 發(fā)布:2024/12/10 8:0:1組卷:191引用:6難度:0.4
把好題分享給你的好友吧~~