試卷征集
加入會員
操作視頻

請閱讀以下材料,并解決問題:
配方法是一種重要的數(shù)學(xué)思想方法.它是指將一個式子或一個式子的某一部分通過恒定變形化為完全平方式或幾個完全平方式的和的方法,并結(jié)合非負(fù)數(shù)的意義來解決一些問題.
[例]已知m2+n2+2m-6n=-10,求m,n的值
解:由已知得(m2+2m+1)+(n2-6n+9)=0,即(m+1)2+(n-3)2=0
∴m+1=0,n-3=0.∴m=-1,n=3.
根據(jù)以上材料,解決以下問題:
已知△ABC的三邊長a,b,c滿足a2+b2-4a=8b-20
(1)若c為整數(shù),求c的值;
(2)若△ABC是等腰三角形,直接寫出它的周長.

【答案】(1)c的值為3,4,5;
(2)10.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/29 19:0:1組卷:119引用:2難度:0.5
相似題
  • 1.先閱讀下面的內(nèi)容,再解決問題,
    例題:若m2+2mn+2n2-6n+9=0,求m和n的值.
    解:因為m2+2mn+2n2-6n+9=0,
    所以m2+2mn+n2+n2-6n+9=0.
    所以(m+n)2+(n-3)2=0.
    所以m+n=0,n-3=0.
    所以m=-3,n=3.
    問題:(1)若x2+4y2+2xy-12y+12=0,求xy的值;
    (2)已知a,b,c是等腰△ABC的三邊長,且a,b滿足a2+b2=10a+8b-41,求△ABC的周長.

    發(fā)布:2025/6/3 0:0:1組卷:455引用:4難度:0.6
  • 2.若x,y是等腰三角形的兩條邊,且滿足4x2+17y2-16xy-4y+4=0,求△ABC的周長.

    發(fā)布:2025/6/3 13:0:1組卷:72引用:3難度:0.6
  • 3.閱讀下面的材料:
    我們可以用配方法求一個二次三項式的最大值或最小值,例如:求代數(shù)式a2-2a+5的最小值.方法如下:
    ∵a2-2a+5=a2-2a+1+4=(a-1)2+4,由(a-1)2≥0,得(a-1)2+4≥4;
    ∴代數(shù)式a2-2a+5的最小值是4.
    (1)仿照上述方法求代數(shù)式x2+10x+7的最小值;
    (2)代數(shù)式-a2-8a+16有最大值還是最小值?請用配方法求出這個最值.

    發(fā)布:2025/6/3 16:30:1組卷:935引用:12難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正