試卷征集
加入會員
操作視頻

閱讀理解:在平面直角坐標(biāo)系中,P1(x1,y1),P2(x2,y2),如何求P1P2的距離.
如圖1,在Rt△P1P2Q中,|P1P2|2=|P1Q|2+|P2Q|2=(x2-x12+(y2-y12,所以
|P1P2|=
x
2
-
x
1
2
+
y
2
-
y
1
2
.因此,我們得到平面上兩點P1(x1,y1),P2(x2,y2)之間
的距離公式為|P1P2|=
x
2
-
x
1
2
+
y
2
-
y
1
2
.根據(jù)上面得到的公式,解決下列問題:
(1)若已知平面兩點A(1,6),B(4,10),則AB的距離為
5
5
;
(2)若平面內(nèi)三點A(-5,3),B(2,4),C(1,1),請運用給出的公式,試判斷△ABC的形狀,并說明理由;
(3)如圖2,在正方形AOBC中,A(-4,3),點D在OA邊上,且D(-2,
3
2
),直線l經(jīng)過O,C兩點,點E是直線l上的一個動點,請直接寫出DE+EA的最小值.

【答案】5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/14 10:0:8組卷:459引用:2難度:0.5
相似題
  • 1.如圖,已知點D是等邊三角形ABC中BC的中點,BC=2,點E是AC邊上的動點,則BE+ED的和最小值為(  )

    發(fā)布:2025/6/8 10:0:2組卷:898引用:9難度:0.7
  • 2.如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,AC=6
    3
    ,BD=6,點P是AC上一動點,點E是AB的中點,則PD+PE的最小值為

    發(fā)布:2025/6/8 3:30:1組卷:1107引用:3難度:0.5
  • 3.如圖,在等邊△ABC中,AD平分∠BAC交BC于點D,點E為AC邊的中點,BC=8,在AD上有一動點Q,則QC+QE的最小值為(  )

    發(fā)布:2025/6/8 6:0:2組卷:52引用:4難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正