在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為x=coskt y=sin2kt
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+π4)=22.
(1)當(dāng)k=2時(shí),求曲線C1上橫、縱坐標(biāo)相等的點(diǎn)的直角坐標(biāo);
(2)當(dāng)k=1時(shí),設(shè)點(diǎn)A在曲線C1上,點(diǎn)B在曲線C2上,求|AB|的最小值.
x = co s k t |
y = si n 2 k t |
ρsin
(
θ
+
π
4
)
=
2
2
【考點(diǎn)】簡單曲線的極坐標(biāo)方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:10引用:1難度:0.7
相似題
-
1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρcosθ=3,曲線C2:ρ=4cosθ(
).0≤θ<π2
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)點(diǎn)Q在C2上,,求動點(diǎn)P的極坐標(biāo)方程.OQ=23QP發(fā)布:2024/12/29 3:0:1組卷:144引用:5難度:0.3 -
2.已知點(diǎn)的極坐標(biāo)是
,則它的直角坐標(biāo)是(3,π4)發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
3.極坐標(biāo)方程ρcosθ=2sin2θ表示的曲線為( ?。?/h2>
發(fā)布:2024/12/29 2:30:1組卷:244引用:6難度:0.7
把好題分享給你的好友吧~~