學(xué)校體育節(jié)要舉辦足球賽,若有5支球隊進行單循環(huán)比賽(即全部比賽過程中任何一隊都要分別與其他各隊比賽一場且只比賽一場),則該校一共要安排多少場比賽?
構(gòu)建模型:
生活中的許多實際問題,往往需要構(gòu)建相應(yīng)的數(shù)學(xué)模型,利用模型的思想來解決問題.為解決上述問題,我們構(gòu)建如下數(shù)學(xué)模型:
(1)如圖①,我們可以在平面內(nèi)畫出5個點(任意3個點都不在同一條直線上),其中每個點各代表一支足球隊,兩支球隊之間比賽一場就用一條線段把它們連接起來.由于每支球隊都要與其他各隊比賽一場,即每個點與另外4個點都可連成一條線段,這樣一共連成5×4條線段,而每兩個點之間的線段都重復(fù)計算了一次,實際只有5×42=10條線段,所以該校一共要安排10場比賽.
(2)若學(xué)校有6支足球隊進行單循環(huán)比賽,借助圖②,可知一共要安排 1515場比賽.
(3)根據(jù)以上規(guī)律,若學(xué)校有n支足球隊進行單循環(huán)比賽,則一共要安排 n(n-1)2n(n-1)2場比賽.
實際應(yīng)用:
(4)老師為了讓數(shù)學(xué)興趣班的同學(xué)互相認識,請班上35位同學(xué)每兩個人都相互握一次手,全班同學(xué)總共握手 595595次.
拓展提高:
(5)往返于深圳和潮汕的同一輛高速列車,中途經(jīng)惠州、陸豐、普寧、潮陽4個車站(每種車票票面都印有上車站名稱與下車站名稱),那么在這段線路上往返行車,要準備多少種車票?請你求出來.
5
×
4
2
n
(
n
-
1
)
2
n
(
n
-
1
)
2
【考點】一元二次方程的應(yīng)用.
【答案】15;;595
n
(
n
-
1
)
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 14:0:2組卷:264引用:3難度:0.7
相似題
-
1.如圖,在△ABC中,∠C=90°,AB=10cm,AC=8cm,點P,Q同時由A,C兩點出發(fā),分別沿AC,CB方向移動,它們的速度都是2cm/s.
(1)設(shè)經(jīng)過t秒后,那么在△PCQ中,此時線段,線段CQ長為cm,PC長為cm.
(2)經(jīng)過幾秒,P,Q相距cm?210發(fā)布:2025/1/24 8:0:2組卷:198引用:6難度:0.3 -
2.如圖,在△ABC中,∠B=90°,點P從點A開始沿AB邊向點B以1cm/秒的速度移動,點Q從點B開始沿BC邊向點C以2cm/秒的速度移動.
(1)如果P、Q分別從A、B同時出發(fā),幾秒后△PBQ是等腰直角三角形?
(2)如果P、Q分別從A、B同時出發(fā),幾秒后△PBQ的面積等于3cm2?
(3)如果P、Q分別從A、B同時出發(fā),四邊形APQC的面積是△ABC面積的三分之二?發(fā)布:2025/1/20 8:0:1組卷:125引用:1難度:0.5 -
3.如圖,矩形ABCD中,AB=8cm,BC=6cm,點M從點A出發(fā),沿著AB→BC的方向以4cm/s的速度向終點C勻速運動;點N從點B出發(fā),沿著BC→CD的方向以3cm/s的速度向終點D勻速運動;點M,N同時出發(fā),當M,N中任何一個點到達終點時,另一個點同時停止運動,點M運動時間為t(s),連接MN,△BMN的面積為S(cm2).
(1)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍;
(2)△BMN的面積可以是矩形ABCD面積的嗎?如能,求出相應(yīng)的t值,若不能,請說明理由.14發(fā)布:2025/1/13 8:0:2組卷:259引用:4難度:0.6