如圖,正方形ABCD的邊長是2個單位長度,一只烏龜(看作一點)從點A出發(fā)以2個單位長度/秒的速度繞正方形順時針運動,另有一只兔子(看作一點)也從點A出發(fā)以6個單位長度/秒的速度繞正方形逆時針運動,1秒后烏龜運動到點D,兔子也運動到點D,記為第1次相遇,則第2022次相遇在( ?。?/h1>
【考點】規(guī)律型:數(shù)字的變化類.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/1 9:0:1組卷:37引用:3難度:0.7
相似題
-
1.已知a1,a2,…,a2023均為正數(shù),且滿足E=(a1+a2+?+a2022)(a2+a3+?+a2022-a2023),F(xiàn)=(a1+a2+?+a2022-a2023)(a2+a3+?+a2022),則E,F(xiàn)之間的關(guān)系是( )
發(fā)布:2025/6/4 17:30:2組卷:299引用:2難度:0.5 -
2.法國數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費馬多邊形數(shù)定理》,其主要突破在“五邊形數(shù)(點的個數(shù))”的證明上.如圖,這是前幾個“五邊形數(shù)”的對應(yīng)圖形,請據(jù)此推斷,第8個“五邊形數(shù)”為 .
發(fā)布:2025/6/4 18:30:2組卷:38引用:1難度:0.5 -
3.沿著圓周放著一些數(shù),如果有依次相連的4個數(shù)a、b、c、d滿足(a-d)(b-c)>0,那么就可以交換b、c的位置,這稱為一次操作.
(1)如圖1,圓周上放著數(shù)1、2、3、4、5、6,問:能否經(jīng)過有限次操作后,對圓周上任意依次相連的4個數(shù)a、b、c、d,都有(a-d)(b-c)≤0?如果能,請在圖2中填寫出滿足要求的最后結(jié)果;如果不能,請說明理由. (2)若圓周上從小到大按順時針依次放著2021個正整數(shù)1、2、3、…、2021,問:能否經(jīng)過有限次操作后,對圓周上任意依次相連的4個數(shù)a、b、c、d,都有(a-d)(b-c)≤0?請說明理由.發(fā)布:2025/6/4 17:0:1組卷:69引用:1難度:0.3