閱讀材料.
我們知道,1+2+3+…+n=n(n+1)2,那么12+22+32+…+n2結(jié)果等于多少呢?
在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個(gè)圓圈中數(shù)的和為2+2,即22,…;第n行n個(gè)圓圈中數(shù)的和為n+n+n+…+n,即n2.這樣,該三角形數(shù)陣中共有n(n+1)2個(gè)圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2.

【規(guī)律探究】
將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n-1行的第一個(gè)圓圈中的數(shù)分別為n-1,2,n),發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中數(shù)的和均為2n+12n+1,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)=n(n+1)(2n+1)2n(n+1)(2n+1)2,因此,12+22+32+…+n2=n(n+1)(2n+1)6n(n+1)(2n+1)6.
【解決問題】
根據(jù)以上發(fā)現(xiàn),計(jì)算:12+22+32+…+1021+2+3+…+10的結(jié)果為77.
n
(
n
+
1
)
2
n
(
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
6
n
(
n
+
1
)
(
2
n
+
1
)
6
1
2
+
2
2
+
3
2
+
…
+
10
2
1
+
2
+
3
+
…
+
10
【考點(diǎn)】有理數(shù)的混合運(yùn)算;規(guī)律型:數(shù)字的變化類.
【答案】2n+1;;;7
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/11 14:0:1組卷:273引用:4難度:0.7
相似題
-
1.計(jì)算:(1)70-20.4÷(2.1-1.8);
(2).(2-13-512)÷124發(fā)布:2025/6/25 8:30:1組卷:55引用:1難度:0.6 -
2.利用運(yùn)算律簡便計(jì)算52×(-999)+49×(-999)+999正確的是( ?。?/h2>
發(fā)布:2025/6/25 8:30:1組卷:694引用:4難度:0.7 -
3.計(jì)算下列各題:
(1)(-5)×2+20÷(-4)
(2)-×(-34)÷(-212)14
(3)(-)×(-34)÷(-212)14
(4)(-14+136)÷(-19)136發(fā)布:2025/6/25 8:30:1組卷:21引用:1難度:0.8