如圖,曲線Γ由兩個橢圓T1:x2m2+y22=1(m>2)和橢圓T2:y22+x2=1組成,當(dāng)橢圓T1,T2的離心率相等時,稱曲線Γ為“貓眼曲線”
(1)求橢圓T1的方程;
(2)任作斜率為k(k≠0)且不過原點的直線與該曲線Γ相交,交橢圓T1所得弦AB的中點為M,交橢圓T2所得弦CD的中點為N,直線OM、直線ON的斜率分別為kOM、kON,試問:kOMkON是否為與k無關(guān)的定值?若是,請求出定值;若不是,請說明理由;
(3)若斜率為2的直線l為橢圓T2的切線,且交橢圓T1于點A,B,N為橢圓T1上的任意一點(點N與點A,B不重合),求△ABN面積的最大值.
x
2
m
2
+
y
2
2
=
1
(
m
>
2
)
y
2
2
+
x
2
=
1
k
OM
k
ON
2
【考點】直線與圓錐曲線的綜合;橢圓的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/10 13:0:2組卷:53引用:4難度:0.5
相似題
-
1.動點M(x,y)與定點F(4,0)的距離和它到定直線l:x=
的距離的比是常數(shù)94.43
(1)求動點M的軌跡方程;
(2)直線l:y=kx+b與M的軌跡交于A,B兩點,AB的中點坐標(biāo)為(6,2),求直線l的方程.發(fā)布:2024/12/6 23:0:1組卷:280引用:4難度:0.5 -
2.已知F1,F(xiàn)2是橢圓E:
+x2a2=1(a>b>0)的左右焦點,過F2作長軸的垂線,在第一象限和橢圓交于點H,且tan∠HF1F2=y2b2.34
(1)求橢圓的離心率;
(2)若橢圓的準(zhǔn)線方程為x=±4,一條過原點O的動直線l1與橢圓交于A,B兩點,N為橢圓上滿足|NA|=|NB|的一點,試求5+1|OA|2+1|OB|2的值;2|ON|2
(3)設(shè)動直線l2:y=kx+m與橢圓有且只有一個公共點P,且與直線x=4相交于點Q,若x軸上存在一定點M(1,0),使得PM⊥QM,求橢圓的方程.發(fā)布:2024/12/1 8:0:1組卷:29引用:1難度:0.1 -
3.定義:圓錐曲線
的兩條相互垂直的切線的交點Q的軌跡是以坐標(biāo)原點為圓心,C:x2a2+y2b2=1為半徑的圓,這個圓稱為蒙日圓.已知橢圓C的方程為a2+b2,P是直線l:x+2y-3=0上的一點,過點P作橢圓C的兩條切線與橢圓相切于M、N兩點,O是坐標(biāo)原點,連接OP,當(dāng)∠MPN為直角時,則kOP=( ?。?/h2>x25+y24=1發(fā)布:2024/12/3 6:0:1組卷:122引用:3難度:0.6
把好題分享給你的好友吧~~