函數(shù)f(x)=12x2+ax-(ax+1)lnx,g(x)為f(x)的導(dǎo)函數(shù)f'(x).
(1)討論g(x)的單調(diào)性;
(2)若f(x)有三個(gè)不同的極值點(diǎn)x1,x2,x3(x1<x2<x3).
(?。┣骯的取值范圍;
(ⅱ)證明f(x3)<f(x1).
f
(
x
)
=
1
2
x
2
+
ax
-
(
ax
+
1
)
lnx
【答案】(1)當(dāng)a≤2時(shí),g(x)在(0,+∞)單調(diào)遞增;
當(dāng)a>2時(shí),g(x)在和單調(diào)遞增,
在單調(diào)遞減;
(2)(i)a>2;(ii)證明見解析.
當(dāng)a>2時(shí),g(x)在
(
0
,
a
-
a
2
-
4
2
)
(
a
+
a
2
-
4
2
,
+
∞
)
在
(
a
-
a
2
-
4
2
,
a
+
a
2
-
4
2
)
(2)(i)a>2;(ii)證明見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:67引用:2難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:237引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:144引用:2難度:0.2
相關(guān)試卷