圖1,是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中的陰影部分的面積為 (m-n)2(m-n)2;
(2)觀察圖2,三個(gè)代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系是 (m+n)2-4mn=(m-n)2(m+n)2-4mn=(m-n)2;
(3)若x+y=-6,xy=114,則x-y=±5±5.(直接寫(xiě)出答案)
11
4
【考點(diǎn)】完全平方公式的幾何背景.
【答案】(m-n)2;(m+n)2-4mn=(m-n)2;±5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:204引用:1難度:0.5
相似題
-
1.如圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀將其均勻分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖②中陰影部分的正方形的邊長(zhǎng)等于 ;
(2)請(qǐng)你用兩種不同的方法表示圖②中陰影部分的面積,方法一:,方法二:;
(3)觀察圖②,你能寫(xiě)出代數(shù)式(m+n)2,(m-n)2,mn之間的關(guān)系嗎?
(4)應(yīng)用:已知m+n=11,mn=28(m>n),求m,n的值.發(fā)布:2025/6/8 11:0:1組卷:59引用:1難度:0.6 -
2.小明同學(xué)用4張長(zhǎng)為x,寬為y的長(zhǎng)方形,拼出如圖所示的包含兩個(gè)正方形的圖形(任意兩張相鄰的卡片之間沒(méi)有重疊、沒(méi)有空隙).
(1)通過(guò)計(jì)算小正方形的面積,寫(xiě)出(x+y)2,y,(x-y)2三者的等量關(guān)系;
(2)利用(1)中的結(jié)論,試求:當(dāng)x+y=6,xy=5,求圖中小正方形的邊長(zhǎng).發(fā)布:2025/6/8 9:30:1組卷:4引用:1難度:0.6 -
3.【知識(shí)生成】我們已經(jīng)知道,多項(xiàng)式的乘法可以利用圖形的面積進(jìn)行解釋.例如利用圖1的面積可以得到(a+b)2=a2+2ab+b2,基于此,請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出圖2所表示的一個(gè)等式:.
(2)小明同學(xué)用圖3中x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張寬、長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出一個(gè)面積為(2a+b)(a+2b)長(zhǎng)方形,則x+y+z=.
【知識(shí)遷移】(3)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些等式,圖4表示的是一個(gè)棱長(zhǎng)為x的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫(xiě)出一個(gè)代數(shù)恒等式:.發(fā)布:2025/6/8 10:30:2組卷:85引用:2難度:0.6